transformer架构详细详解

news2024/11/16 16:44:39

一、transformer的贡献

transformer架构的贡献:该架构只使用自注意力机制,没有使用RNN或卷积网络。且可以实现并行计算,加快模型训练速度。

(将所有的循环层全部换成:multi-headed self-attention)

二、transformer架构

当前序列模型中编码器和解码器架构的效果会更好(encoder-decoder)。

1、编码器定义:

编码器会将一个输入(x1,x2,x3,x4....xn)的一个序列,表示为一个长度为n的序列(z1,z2,z3,z4...zn),其中每一个zt,表示的是xt的一个向量。若该序列为一个句子,则第xt就表示第xt个词。则zt就表示第t个词的向量表示。综上就是编码器的输出。

(通过这样的转换,就可以将用户的输入转换为向量表示,使得模型能够正确的处理)

2、解码器的定义:

解码器会拿到编码器的输出,然后会生成一个长为m(y1,y2,y3,....ym)的一个序列,需要注意的是:n和m可能是不一样长的。如:在将中文句子翻译成英文句子的时候,两种语言的长度可能是不一样的。

3、编码器和解码器的差异:

对于编码器而言:在生成对应的序列的时候,可能是一次性全部生成的。 但在解码器中,解码器生成序列的时候是一个一个元素生成的。这个过程叫做自回归(auto-regressivet)的一个模型。

4、自回归概念的解释

在一个模型中,你的输入又是你的输出。

实际举例:比如在一个实际的序列模型中,你想模型输入了一句话,经过编码器的处理,变成了一个向量序列z(z1,z2,z3....zn),然后将这个向量序列逐个传递给解码器,解码器得到z1后,根据z1就会得到y1;然后根据自回归原理,y1预测得到y2,y2预测y3,依次类推,就可以得到yn。

5、transformer与encoder-decoder之间的联系

transformer是使用了一个编码器和解码器的架构。更具体的解释为:transformer是将一些注意力和point-wise fully connected layers,一个一个堆在一起的。

既然是讲解transformer架构,那怎么能少了论文中的transformer架构图:

简单解释一下:

我们可以发现这个架构是有两个部分构成,分别是左边的编码器和右边的解码器。然后在编码器的下方,接收一个用户输入。 在解码器的下方,也有一个解码器输入,但是这个输入是比较特殊的,我们细看这个架构图,可以发现解码器的输入并不是input,而是output。其实这是因为在做预测的时候,解码器的输入其实就是编码器的输入。所以这是output,表示是的编码器的输出。然后解码器的输入是一个一个往后或往右移动的。

图中的左边N表示编码器这个整体有N个叠加在一起,右边的N作用雷同。

然后左边编码器的输出作为右边解码器的输入。

6、transformer中编码器的深入讲解

编码器是用n等于六个一样的层(layer),即transformer架构图中的编码器。每个layer中有两个子层(sub-layers)。第一个sub-layer叫做multi-head self-attention。第二sub-layer叫做position-wise fully connected feed-forwad network。对于每个子层,采用了残差连接。最后再使用一个layer notmalization。因为在编码器中使用了残差连接,且残差网络的需求是:输入和输出是一样的大小,如果输入和输出大小不一样,则需要进行投影。所以为了简单起见,论文中奖每一个层的输出的维度变为512,也就是说对一个词,不管是在那一层,就将该词对应的向量表示为512维。

正式基于上述的简单网络设计:

使得该架构可以通过调整n和每一层输出的长度维数这两个参数。

7、transformer中解码器的深入 理解

解码器的构成和编码器很像,也是n为6的同样的层构成。每个层中都有两个子层。但是不同的是:编码器中使用了第三个子层,该层同样是一个多头注意力机制,layer notmalization。在解码器中进行的是自回归预测。所以在训练解码器进行预测时候,不应该让解码器看到预测后的结果。

但是在注意力机制里面,可以看到完整的输入,这样就不能达到预测的效果。因此transformer的解决方法是:通过一个带掩码的注意力机制,这样做的目的是:当我们要让模型预测t时刻对应的结果时,模型不能知道t时刻以后的内容。这样就可以达到一个预测的效果。

三.transformer注意力相关知识介绍

1、transformer中注意力定义

注意力函数:是将query和一些关键值(key value)对,映射成一个输出(output)的一个函数。函数涉及到的query、key value 和output都是一些向量。

具体来说注意力机制的输出output是:value的一个加权和。所以这也说明了输出的维度是和value的维度是一样的。

既然output是value的加权和,那么权重是怎么计算得到?

权重是根据key和query的相似度进行计算的。

2、transformer中单个注意力的计算过程(scaled dot-product attention)

transformer中将注意力的计算过程叫做:缩放的点积注意力(scaled dot-product attention)。

这种计算注意力的方法query和key它的长度是等长的,都等于dk。value是dv。

具体的理论计算过程是:将每一个query和key做累积,可以简单的认为是两个向量做“点积”运算。然后再将累积的结果除以根号dk,然后再用一个softmax函数对处理后的结果进行运算得到该query的权重。然后将得到的权重作用到v中就得到输出。

实例的注意力计算过程:刚刚解释了注意力的计算过程,我们发现一个问题,如果我们仅仅是一个query,一个query的计算。则计算的速度是比较慢的。所以在实际计算注意力机制的时候:我们是将query写成一个矩阵(包含n个query),将key写成一个矩阵(包含m个key),这里需要注意的是:query的个数不一定等于key的个数。

①query矩阵的解释:

这时query矩阵是由n个长度为dk的向量构成的二维矩阵。

②key矩阵的解释:

这时key矩阵是由m个长度为dk的向量构成的二维矩阵。

当我们得到query的矩阵和key的矩阵,只需要用query的矩阵点积key矩阵的转置,就会得到一个新的n×m的矩阵(此时这个矩阵的每一行就代表着一个query和key的内积值)。然后再将得到的内积值,除以根号下dk,在将除以dk的结果经过softmax函数进行处理。然后将经过softmax处理后的结果乘以v(其中v是一个m行dv列的矩阵),最后的输出结果就是一个n行dv列的矩阵

注意力机制一般有两种:加型注意力机制(用于处理query和key不等长的情况)和点积注意力机制(transformer架构中的注意力机制就是基于这种注意力机制,但是除了一个根号dk),正是因为transformer架构中除以了一个数,所以transformer中的注意力机制叫做缩放点积注意力机制

3、transformer计算注意力的时候除以根号dk的解释

在论文中给出了详细的解释:当dk不是很大的时候(dk是指query和key向量对应的长度),可以不除根号dk。 但是当dk的值比较大时,就表明向量的长度比较大,所以将这两个向量做点积的时候,这些值比较大也可能比较小,这样就会造成计算得到的结果相对差距会变大。从而大致越大的值经过softmax函数处理后,会更加的接近1;越小的值经过softmax函数处理后,就会更加接近0;最终的结果就会使得计算得到的值是在聚集在“0端” 和“1端”这样就是的结果两级分化。这样的效果就会造成梯度消失或梯度爆炸。

transformer中注意力机制的计算图:

4.transformer中多头注意力机制(Multi-Head Attention)的计算过程

在论文中解释多头注意力机制的由来,是将query、key、value投影到一个低维h次,然后做h次的注意力函数。然后将每一个函数的输出并在一起,然后再投影来得到最终的输出。

论文中举出的公式:

通过以上公式我们可以看出:在计算多头注意力的时候,输入还是以前的q、k、v。但是输出是不同的头进行合并起来(concat),投影到wo里面。然后对每个头,通过一个不同的可以学习的wq,wk,wv投影到低维上面。

在论文中使用8个头,因为在计算注意力的时候,有残差连接,所以输出和出入维度至少是一样的。

所以在投影的时候,它投影的就是你的输出的维度除以h

在论文中因为设置的维度为512维,多头数为8,所以投影维度为512/8=64。

5、transformer中使用多头注意力机制的情况

①在编码器中使用,外部输入的信息经过添加位置编码后,转换为向量。然后将向量一分为三:query,value、key。通过多头注意力机制,将n组q,k,v作为输入,就会得到n个输出。在使用多头注意力机制的时候,会学习到n个不一样的距离空间出来,使得输出输出的东西是不一样的。

②在解码器中底部使用:在解码器中的利用和编码器中利用原理是相似的,但是解码器中多出一个掩码机制,这是因为解码器在预测第t个词的时候,是不能看到第t个词后面的信息。所以要将第t个词后的全部词对应的权重为0。

③在解码器的中间使用:需要注意的是:这时的注意力机制不在是自注意力机制(即q,k,v的来源是不一样的)。此时注意力机制输入的key和value是来自编码器的输出。然后query是来自解码器下一个(与transformer中解码器的结构图对应)attention的输入。这个注意力机制的应用,目的是根据在解码器输入的不一样向量,则会根据当前需要计算的向量,在编码器的输出里面去挑出与该变量最相关的东西,进行计算

四、transformer中位置前馈网络(position-wise feed-forward networks)讲解

1、位置前馈网络的简单介绍

位置前馈网络(position-wise feed-forward networks )其实就是MLP(多层感知机)。但是不一样的是把一个MLP对每一个词作用一次,且对每个词作用的是同一个MLP(这就是论文中point wise的意思)。

2、计算公式

公式解释:这个公式中xw1+b1表示一个线性层,然后使用max函数,将线性层的结果与0进行比较,选择较大的数,即表示的一个relu激活函数。然后将relu的结果与w2相乘,加上一个常数b2。从而构成一个新的线性层。

我们知道在论文中,注意力层他的输入:每一个query它对应的哪一个输出,它是长为512,那么就是说公式中的x向量的长度对应就是512,然后论文中的操作根据w1参数,将512投影为2048(即将x向量的维度扩大了四倍)。然后因为position-wise feed-forward networks用到了一个残差连接为了让输出维度和输出维度保持一致,所以会用参数w2将当前长度为2048的向量,投影为长度为512的向量。

五、transformer中Embeddings层 和 Softmax层

①embeddings层:因为我们输出模型的词(token),不能直接被模型识别,所以我们需要将他映射成一个向量(在论文映射成向量后,向量的长度为512)。

②在线性层的前面也需要一个embedding,且权重相同,且将权重乘以根号d(d表示向量对应的长度,论文中d为512)。

六、transformer中位置编码(Positional Encoding)

因为transformer架构中是利用attention提取序列的有效信息。虽然提取到了输入序列的有效信息,但是并不会有时序信息。transformer中解决这个问题方法是将输出序列的内容和时序信息进行结合,作为模型的输入。

论文中给出的计算位置信息的公式:

七、transformer的总结

在transformer中attention起到的作用就是把输入序列的有效信息抓取出来,做一次汇聚得到一个输出结果。此时汇聚得到的结果已经包含了序列中我需要的东西,然后聚合结果传入到位置前馈网络中,经过位置前馈网络的处理将得到的序列信息映射到对应的语义空间的时候,做一个语义转换。

但是在rnn神经网络中,是将输入的序列(x1,x2,..xn),将x1向量经过MLP单独处理后的结果y1,在将y1和下一个序列作为输入计算y2....这样的计算过程就会变慢,而且当输出序列太大时,会出现语义丢失。

下图是沐神画出的transformer和rnn在处理序列上的区别:

课程链接:Transformer论文逐段精读【论文精读】_哔哩哔哩_bilibili

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1605683.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Day13-Python基础学习之数据分析案例

数据分析案例 data_define.py # 数据定义的类 class Record:def __init__(self, date, order_id, money, province):self.date dateself.order_id order_idself.money moneyself.province province ​def __str__(self):return f"{self.date}, {self.order_id}, {se…

OpenGL:图元

OpenGL的图元 点 GL_POINTS: 将顶点绘制成单个的点 线 GL_LINES:将顶点用于创建线段,2个点成为一条单独的线段。如果顶点个数是奇数,则忽略最后一个。 顶点:v0, v1, v2, v3, … , vn,线段:v0-v1, v2-v3, v4-v5, … , vn-1 - vn GL_LINE_STRIP:将顶点用于创建线段,…

驱动创新成长,智能费控助力国央企财务数智化升级

如果说中小企业是我国国民经济的毛细血管,那么国央企就是承载着我国市场发展的主动脉,是国民经济的重要支柱。今年以来,面对复杂严峻的国内外发展环境,国央企锚定目标,深入开展提质增效专项行动,打出深化改…

基础算法之二分算法

前言 本次博客,将要介绍二分算法的基本原理以及如何使用,深入浅出 二分可以针对整型以及浮点型接下来对其讲解希望对小白有所帮助吧 整型的二分法 一般要在一个数组中猜出一个数是否存在我们可以遍历一遍整个数组,判断是否存在&#xff0…

python学习笔记B-07:序列结构之列表--列表的常用函数和方法

以xx_函数名(列表名)的形式出现的是函数;以xx_列表名.xx_方法名的形式出现的是方法。 列表常用函数如下: len():计算列表元素数量 max():获取列表元素最大值 min():获取列表元素最小值 sum():计算列表中各元素之和 列表常用方法如…

wps导出pdf文献引用不能跳转解决办法

问题描述 本科论文参考文献使用wps设置交叉引用,但导出pdf后无法跳转引用 尝试 用office word打开文件word版跳转没有问题, 另存为pdf或导出pdf。 但是pdf版跳转完全错误。 16跳到14.但是总体而言都是跳到包含该序号的页 要求不高的话也可以&#x…

【WebSocket连接异常】前端使用WebSocket子协议传递token时,Java后端的正确打开方式!!!

文章目录 1. 背景2. 代码实现和异常发现3. 解决异常3.1 从 URL入手3.2 从 WebSocket子协议的使用方式入手(真正原因) 4. 总结(仍然存在的问题) 前言: 本篇文章记录的是使用WebSocket进行双向通信时踩过的坑&#xff0c…

链表(C语言)

前言:前面几篇文章我们详细介绍了顺序表,以及基于顺序表来实现的通讯录。今天我们连介绍一下链表的下一个结构链表。那么链表和顺序表究竟有什么区别呢?他们两个的优缺点分别是什么。今天这篇文章就带大家了解一下链表。 目录 一.链表的概念…

新质生产力走红背后,华为云的基本盘和自我修养

文 | 智能相对论 作者 | 沈浪 今年全国两会期间走红的“新质生产力”正成为中国产业转型升级的关键方向。政府工作报告更是把“大力推进现代化产业体系建设,加快发展新质生产力”放在今年政府工作任务的重要位置。 何为新质生产力?简单来说&#xff0…

C++奇迹之旅:探索C++拷贝构造函数

文章目录 📝拷贝构造函数🌠 概念🌉特征 🌠浅拷贝(值拷贝)🌉深拷贝 🌠拷贝构造函数典型调用场景🌠应用时效率的思考🚩总结 📝拷贝构造函数 🌠 概念 在现实生…

web轮播图

思路: 例如:有5张轮播的图片,每张图片的宽度为1024px、高度为512px.那么轮播的窗口大小就应该为一张图片的尺寸,即为:1024512。之后将这5张图片0px水平相接组成一张宽度为:5120px,高度依然为:5…

SpringBoot - Logback 打印第三方 Jar 日志解决方案

问题描述 最近碰到一个很苦恼的问题&#xff0c;就是第三方的 Jar 在自己项目里日志可以正常输出&#xff0c;但是一旦被引用到其他项目里&#xff0c;就日志死活打不出来…… 解决方案 这是原来的配置 - logback.xml <?xml version"1.0" encoding"UTF-8…

5G-A有何能耐?5G-A三载波聚合技术介绍

2024年被称作5G-A元年。5G-A作为5G下一阶段的演进技术&#xff0c;到底有何能耐呢&#xff1f; 三载波聚合&#xff08;3CC&#xff09;被认为是首个大规模商用的5G-A技术&#xff0c;将带来手机网速的大幅提升。 █ 什么是3CC 3CC&#xff0c;全称叫3 Component Carriers…

python聊天室

python聊天室 文章目录 python聊天室chat_serverchat_client使用方式1.局域网聊天2.公网聊天 下面是一个简单的示例&#xff0c;包含了chat_client.py和chat_server.py的代码。 chat_server chat_server.py监听指定的端口&#xff0c;并接收来自客户端的消息&#xff0c;并将消…

一个 .net 8 + Azure 登录 + Ant Design Blazor 的基本后台框架

一个 .net 8 Azure 登录 Ant Design Blazor 的基本后台框架 主界面使用了 Ant Design Blazor 项目模板搭建 后台技术是 .net 8 Blazor run at server 模式 登录方式使用 Azure 实现了菜单导航和路由 此外实现了读取和修改本地Json文件的功能&#xff0c;不是必须的&#x…

【Python】OPC UA模拟服务器实现

目录 服务器模拟1. 环境准备2. 服务器设置3. 服务器初始化4. 节点操作5. 读取CSV文件6. 运行服务器 查看服务器客户端总结 在工业自动化和物联网&#xff08;IoT&#xff09;领域&#xff0c;OPC UA&#xff08;开放平台通信统一架构&#xff09;已经成为一种广泛采用的数据交换…

Leo赠书活动-24期 【三大层次学习企业架构框架TOGAF】文末送书

✅作者简介&#xff1a;大家好&#xff0c;我是Leo&#xff0c;热爱Java后端开发者&#xff0c;一个想要与大家共同进步的男人&#x1f609;&#x1f609; &#x1f34e;个人主页&#xff1a;Leo的博客 &#x1f49e;当前专栏&#xff1a; 赠书活动专栏 ✨特色专栏&#xff1a;…

鸿蒙开发岗突增!它和前端开发到底有哪些区别和联系?

2024年1 月 18 日&#xff0c;鸿蒙 Next 预览版面向开发者正式开放申请。至此&#xff0c;鸿蒙原生应用版图已成型&#xff0c;这个中国自主研发的操作系统&#xff0c;正式走上了独立之路。 有许多的公司都陆续地加入了鸿蒙原生应用开发的队列&#xff0c;从年初宣布的200个应…

网络基础-基于TCP协议的Socket通讯

一、Socket通讯基于TCP协议流程图 UDP 的 Socket 编程相对简单些不在介绍。 二、 服务端程序启动 服务端程序要先跑起来&#xff0c;然后等待客户端的连接和数据。 服务端程序首先调用 socket() 函数&#xff0c;创建网络协议为 IPv4&#xff0c;以及传输协议为 TCP 的…

基于数据库现有表导出为设计文档

1.查询 SELECTCOLUMN_NAME 字段名,COLUMN_COMMENT 字段描述,COLUMN_TYPE 字段类型,false as 是否为主键 FROMINFORMATION_SCHEMA.COLUMNS wheretable_NAME region -- 表名2.查询结果 3.导出为excel