大创项目推荐 深度学习YOLOv5车辆颜色识别检测 - python opencv

news2024/11/23 3:28:50

文章目录

  • 1 前言
  • 2 实现效果
  • 3 CNN卷积神经网络
  • 4 Yolov5
  • 6 数据集处理及模型训练
  • 5 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 **基于深度学习YOLOv5车辆颜色识别检测 **

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:3分
  • 工作量:3分
  • 创新点:4分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 实现效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

3 CNN卷积神经网络

卷积神经网络(CNN),是由多层卷积结构组成的一种神经网络。卷积结构可以减少网络的内存占用、参数和模型的过拟合。卷积神经网络是一种典型的深度学习算法。广泛应用于视觉处理和人工智能领域,特别是在图像识别和人脸识别领域。与完全连接的神经网络相比,CNN输入是通过交换参数和局部感知来提取图像特征的图像。卷积神经网络是由输入层、卷积层、池化层、全连接层和输出层五层结构组成。其具体模型如下图所示。
在这里插入图片描述

(1)输入层(Input
layer):输入层就是神经网络的输入端口,就是把输入传入的入口。通常传入的图像的R,G,B三个通道的数据。数据的输入一般是多维的矩阵向量,其中矩阵中的数值代表的是图像对应位置的像素点的值。

(2)卷积层(Convolution layer):卷积层在CNN中主要具有学习功能,它主要提取输入的数据的特征值。

(3)池化层(Pooling
layer):池化层通过对卷积层的特征值进行压缩来获得自己的特征值,减小特征值的矩阵的维度,减小网络计算量,加速收敛速度可以有效避免过拟合问题。

(4)全连接层(Full connected
layer):全连接层主要实现是把经过卷积层和池化层处理的数据进行集合在一起,形成一个或者多个的全连接层,该层在CNN的功能主要是实现高阶推理计算。

(5)输出层(Output layer):输出层在全连接层之后,是整个神经网络的输出端口即把处理分析后的数据进行输出。

cnn卷积神经网络的编写如下,编写卷积层、池化层和全连接层的代码

conv1_1 = tf.layers.conv2d(x, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_1')
conv1_2 = tf.layers.conv2d(conv1_1, 16, (3, 3), padding='same', activation=tf.nn.relu, name='conv1_2')
pool1 = tf.layers.max_pooling2d(conv1_2, (2, 2), (2, 2), name='pool1')
conv2_1 = tf.layers.conv2d(pool1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_1')
conv2_2 = tf.layers.conv2d(conv2_1, 32, (3, 3), padding='same', activation=tf.nn.relu, name='conv2_2')
pool2 = tf.layers.max_pooling2d(conv2_2, (2, 2), (2, 2), name='pool2')
conv3_1 = tf.layers.conv2d(pool2, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_1')
conv3_2 = tf.layers.conv2d(conv3_1, 64, (3, 3), padding='same', activation=tf.nn.relu, name='conv3_2')
pool3 = tf.layers.max_pooling2d(conv3_2, (2, 2), (2, 2), name='pool3')
conv4_1 = tf.layers.conv2d(pool3, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_1')
conv4_2 = tf.layers.conv2d(conv4_1, 128, (3, 3), padding='same', activation=tf.nn.relu, name='conv4_2')
pool4 = tf.layers.max_pooling2d(conv4_2, (2, 2), (2, 2), name='pool4')

flatten = tf.layers.flatten(pool4)
fc1 = tf.layers.dense(flatten, 512, tf.nn.relu)
fc1_dropout = tf.nn.dropout(fc1, keep_prob=keep_prob)
fc2 = tf.layers.dense(fc1, 256, tf.nn.relu)
fc2_dropout = tf.nn.dropout(fc2, keep_prob=keep_prob)
fc3 = tf.layers.dense(fc2, 2, None)

4 Yolov5

简介

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:
在这里插入图片描述

网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

Mosaic数据增强
:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错
在这里插入图片描述

基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述
在这里插入图片描述

FPN+PAN的结构
在这里插入图片描述
这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:


①==>40×40×255

②==>20×20×255

③==>10×10×255

在这里插入图片描述

  • 相关代码

    class Detect(nn.Module):
      stride = None  # strides computed during build
      onnx_dynamic = False  # ONNX export parameter
        
      def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
          super().__init__()
          self.nc = nc  # number of classes
          self.no = nc + 5  # number of outputs per anchor
          self.nl = len(anchors)  # number of detection layers
          self.na = len(anchors[0]) // 2  # number of anchors
          self.grid = [torch.zeros(1)] * self.nl  # init grid
          self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
          self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
          self.inplace = inplace  # use in-place ops (e.g. slice assignment)
        
      def forward(self, x):
          z = []  # inference output
          for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
              bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
              x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
        
    
              if not self.training:  # inference
                  if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                      self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
        
                  y = x[i].sigmoid()
                  if self.inplace:
                      y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                      y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                  else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                      wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                  z.append(y.view(bs, -1, self.no))
        
          return x if self.training else (torch.cat(z, 1), x)
    
      def _make_grid(self, nx=20, ny=20, i=0):
          d = self.anchors[i].device
          if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
              yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
          else:
              yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
          grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
          anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
              .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
          return grid, anchor_grid
    

6 数据集处理及模型训练

数据集准备

由于目前汽车颜色图片并没有现成的数据集,我们使用Python爬虫利用关键字在互联网上获得的图片数据,编写程序爬了1w张,筛选后用于训练。

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

数据标注简介

通过pip指令即可安装


pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述
后续课查看其他标注教程,不难。

开始训练模型

处理好数据集和准备完yaml文件,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数
在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。
在这里插入图片描述

5 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1601147.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

imx6ull构建根文件系统

在nfs目录下创建 rootfs 复制正点原子给的BusyBox解压。 进入MakeFile,加入如下 中文字符支持 打开文件 busybox-1.29.0/libbb/printable_string.c, 打开文件 busybox-1.29.0/libbb/unicode.c make menuconfig 不要选中 编译 完成后如下 这里我解压文…

【ARM】如何通过ARMDS的Map文件查看堆栈调用情况

【更多软件使用问题请点击亿道电子官方网站】 1、 文档目标 通过ARMDS生成的Map文件,查看工程的堆栈使用情况。 2、 问题场景 在对于工程进行调试和测试的时候,工程师通常需要了解目前工程的堆栈使用情况,是否有函数或者变量占用了过多的堆…

基于HMM隐马尔可夫模型的金融数据预测算法matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 基于HMM隐马尔可夫模型的金融数据预测算法.程序实现HMM模型的训练,使用训练后的模型进行预测。 2.测试软件版本以及运行结果展示 MATLAB2022A版本运…

新手小白花几个月勇敢裸辞转行网络安全

我是 25 岁转行学网络安全的。说实在,转行就是奔着挣钱去的。希望我的经历可以给想转行的朋友带来一点启发和借鉴。 先简单介绍下个人背景,三流大学毕业,物流专业,学习能力一般,没啥特别技能,反正就很普通…

智慧园区解决方案一站式资料大全:标准规范顶层设计指南、供应商整体解决方案及售前PPT、标准白皮书、全国前50智慧园区集成商方案等全套600份,一次性打包下载

关键词:智慧园区解决方案,智慧园区整体解决方案,智慧园区建设总体方案设计,智慧园区综合管理系统,智慧产业园区解决方案,智慧产业园区规划方案,智慧园区建设规划方案,智慧工业园区建…

java正则表达式教程

什么是正则表达式: 正则表达式是一种用来描述字符串模式的语法。在 Java 中,正则表达式通常是一个字符串,它由普通字符(例如字母、数字、标点符号等)和特殊字符(称为元字符)组成。这些特殊字符可…

单链表经典算法题分析

目录 一、链表的中间节点 1.1 题目 1.2 题解 1.3 收获 二、移除链表元素 2.1 题目 2.2 题解 2.3 收获 2.4递归详解 三、反转链表 3.1 题目 3.2 题解 3.3 解释 四、合并两个有序列表 4.1 题目 4.2 题解 4.3 递归详解 声明:本文所有题目均摘自leetco…

康耐视visionpro-CogCreateLinePerpendicularTool操作操作工具详细说明

CogCreateLinePerpendicularTool]功能说明: 创建点到线的垂线 CogCreateLinePerpendicularTool操作说明: ①.打开工具栏,双击或点击扇标拖拽添加CogCreateLinePerpendicularTool ②.添加输入源:右键“链接到”或以连线拖 拽的方式…

如何使用上位机监控和控制设备

本文将介绍如何使用上位机来监控和控制设备,并探讨其中的关键步骤和注意事项。 1. 设备接口与通信设置 在使用上位机监控和控制设备之前,首先需要建立设备与上位机之间的通信连接。这通常涉及选择合适的通信接口和协议,例如串口、以太网、M…

OpenHarmony实战开发-如何使用ArkUIstack 组件实现多层级轮播图。

介绍 本示例介绍使用ArkUIstack 组件实现多层级轮播图。该场景多用于购物、资讯类应用。 效果图预览 使用说明 1.加载完成后显示轮播图可以左右滑动。 实现思路 1.通过stack和offsetx实现多层级堆叠。 Stack() {LazyForEach(this.swiperDataSource, (item: SwiperData, i…

算法思想总结:链表

一、链表的常见技巧总结 二、两数相加 . - 力扣(LeetCode) class Solution { public:ListNode* addTwoNumbers(ListNode* l1, ListNode* l2) {//利用t来存进位信息int t0;ListNode*newheadnew ListNode(0);//创建一个哨兵节点,方便尾插List…

【从零开始手搓12306项目】十二、项目初始化配置

idea的编码环境全都改成UTF-8 自动导入依赖 自动编译

【C语言】每日一题,快速提升(3)!

🔥博客主页🔥:【 坊钰_CSDN博客 】 欢迎各位点赞👍评论✍收藏⭐ 题目:杨辉三角 在屏幕上打印杨辉三角。 1 1 1 1 2 1 1 3 3 1 ……......... 解答: 按照题设的场景,能发现数字规律为&#xff1…

政安晨:【深度学习神经网络基础】(十)—— 反向传播网络中计算输出节点增量与计算剩余节点增量

目录 简述 二次误差函数 交叉熵误差函数 计算剩余节点增量 政安晨的个人主页:政安晨 欢迎 👍点赞✍评论⭐收藏 收录专栏: 政安晨的机器学习笔记 希望政安晨的博客能够对您有所裨益,如有不足之处,欢迎在评论区提出指正&#xf…

Fatal error in launcher: Unable to create process using【解决方案】

拷贝python 项目到其他电脑以后,执行pip list 命令时报如下错误: Fatal error in launcher: Unable to create process using ‘“d:\python37\python.exe” “C:\Python\Scripts\pip.exe” list’: ??? 解决方法: 先试这条: …

Adobe将Sora、Runway、Pika,集成在PR中

4月15日晚,全球多媒体巨头Adobe在官网宣布,将OpenAI的Sora、Pika 、Runway等著名第三方文生视频模型,集成在视频剪辑软件Premiere Pro中(简称“PR”)。 同时,Adob也会将自身研发的Firefly系列模型包括视频…

xxl-job使用自动注册节点,ip不对,如何解决????

很明显这时我们本机的ip和我们xxl-job自动注册的ip是不一致的,此时该如何处理呢???? 方法一:在配置文件中,将我们的ip固定写好。 ### xxl-job executor server-info xxl.job.executor.ip写你的…

计算机视觉 | 基于 ORB 特征检测器和描述符的全景图像拼接算法

Hi,大家好,我是半亩花海。本项目实现了基于 ORB 特征检测器和描述符的全景图像拼接算法,能够将两张部分重叠的图像拼接成一张无缝连接的全景图像。 文章目录 一、随机抽样一致算法二、功能实现三、代码解析四、效果展示五、完整代码 一、随机…

蓝桥杯 — — 完全日期

完全日期 友情链接:完全日期 题目: 思路: 直接从20010101枚举到20211231,然后再判断每一个数是否是一个合法的日期,如果这个日期是合法的,接着判断这个日期的每一个位置上的数字之和是否是一个完全平方数…

3D模型处理的并行化

今天我们将讨论如何使用 Python 多进程来处理大量3D数据。 我将讲述一些可能在手册中找到的一般信息,并分享我发现的一些小技巧,例如将 tqdm 与多处理 imap 结合使用以及并行处理存档。 那么我们为什么要诉诸并行计算呢? 使用数据有时会出现…