代码随想录阅读笔记-回溯【组合总和II】

news2024/11/24 6:10:06

题目

给定一个数组 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。

candidates 中的每个数字在每个组合中只能使用一次。

说明: 所有数字(包括目标数)都是正整数。解集不能包含重复的组合。

  • 示例 1:
  • 输入: candidates = [10,1,2,7,6,1,5], target = 8,
  • 所求解集为:
[
  [1, 7],
  [1, 2, 5],
  [2, 6],
  [1, 1, 6]
]
  • 示例 2:
  • 输入: candidates = [2,5,2,1,2], target = 5,
  • 所求解集为:
[
  [1,2,2],
  [5]
]

思路 

这道题目和上一道组合总和有如下区别:

  1. 本题candidates 中的每个数字在每个组合中只能使用一次。
  2. 本题数组candidates的元素是有重复的,而上道题是无重复元素的数组candidates

本题的难点在于区别2中:集合(数组candidates)有重复元素,但还不能有重复的组合

一些同学可能想了:我把所有组合求出来,再用set或者map去重,这么做很容易超时!

所以要在搜索的过程中就去掉重复组合。

所谓去重,其实就是使用过的元素不能重复选取。

都知道组合问题可以抽象为树形结构,那么“使用过”在这个树形结构上是有两个维度的,一个维度是同一树枝上使用过,一个维度是同一树层上使用过。没有理解这两个层面上的“使用过” 是造成大家没有彻底理解去重的根本原因。

那么问题来了,我们是要同一树层上使用过,还是同一树枝上使用过呢?

回看一下题目,元素在同一个组合内是可以重复的,怎么重复都没事,但两个组合不能相同。

所以我们要去重的是同一树层上的“使用过”,同一树枝上的都是一个组合里的元素,不用去重

为了理解去重我们来举一个例子,candidates = [1, 1, 2], target = 3,(方便起见candidates已经排序了)

强调一下,树层去重的话,需要对数组排序!

选择过程树形结构如图所示:

40.组合总和II

回溯三部曲

1、递归函数参数

此题还需要加一个bool型数组used,用来记录同一树枝上的元素是否使用过。这个集合去重的重任就是used来完成的。

vector<vector<int>> result; // 存放组合集合
vector<int> path;           // 符合条件的组合
void backtracking(vector<int>& candidates, int target, int sum, int startIndex, vector<bool>& used) {

2、递归终止条件

与上题相同,终止条件为 sum > target 和 sum == target

if (sum > target) { // 这个条件其实可以省略
    return;
}
if (sum == target) {
    result.push_back(path);
    return;
}

sum > target 这个条件其实可以省略,因为在递归单层遍历的时候,会有剪枝的操作,下面会介绍到。

3、单层搜索的逻辑

前面我们提到:要去重的是“同一树层上的使用过”,如何判断同一树层上元素(相同的元素)是否使用过了呢。

如果candidates[i] == candidates[i - 1] 并且 used[i - 1] == false,就说明:前一个树枝,使用了candidates[i - 1],也就是说同一树层使用过candidates[i - 1]

此时for循环里就应该做continue的操作。

这块比较抽象,如图:

40.组合总和II1

我在图中将used的变化用橘黄色标注上,可以看出在candidates[i] == candidates[i - 1]相同的情况下:

  • used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
  • used[i - 1] == false,说明同一树层candidates[i - 1]使用过

可能有人想,为什么 used[i - 1] == false 就是同一树层呢,因为同一树层,used[i - 1] == false 才能表示,当前取的 candidates[i] 是从 candidates[i - 1] 回溯而来的。

而 used[i - 1] == true,说明是进入下一层递归,去下一个数,所以是树枝上,如图所示:

这块去重的逻辑很抽象,网上搜的题解基本没有能讲清楚的,如果大家之前思考过这个问题或者刷过这道题目,看到这里一定会感觉通透了很多!

那么单层搜索的逻辑代码如下:

for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
    // used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
    // used[i - 1] == false,说明同一树层candidates[i - 1]使用过
    // 要对同一树层使用过的元素进行跳过
    if (i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == false) {
        continue;
    }
    sum += candidates[i];
    path.push_back(candidates[i]);
    used[i] = true;
    backtracking(candidates, target, sum, i + 1, used); // 和39.组合总和的区别1:这里是i+1,每个数字在每个组合中只能使用一次
    used[i] = false;
    sum -= candidates[i];
    path.pop_back();
}

注意sum + candidates[i] <= target为剪枝操作

回溯三部曲分析完了,整体C++代码如下:

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& candidates, int target, int sum, int startIndex, vector<bool>& used) {
        if (sum == target) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
            // used[i - 1] == true,说明同一树枝candidates[i - 1]使用过
            // used[i - 1] == false,说明同一树层candidates[i - 1]使用过
            // 要对同一树层使用过的元素进行跳过
            if (i > 0 && candidates[i] == candidates[i - 1] && used[i - 1] == false) {
                continue;
            }
            sum += candidates[i];
            path.push_back(candidates[i]);
            used[i] = true;
            backtracking(candidates, target, sum, i + 1, used); // 和39.组合总和的区别1,这里是i+1,每个数字在每个组合中只能使用一次
            used[i] = false;
            sum -= candidates[i];
            path.pop_back();
        }
    }

public:
    vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
        vector<bool> used(candidates.size(), false);
        path.clear();
        result.clear();
        // 首先把给candidates排序,让其相同的元素都挨在一起。
        sort(candidates.begin(), candidates.end());
        backtracking(candidates, target, 0, 0, used);
        return result;
    }
};

  • 时间复杂度: O(n * 2^n)
  • 空间复杂度: O(n)

这里直接用startIndex来去重也是可以的, 就不用used数组了。

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(vector<int>& candidates, int target, int sum, int startIndex) {
        if (sum == target) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i < candidates.size() && sum + candidates[i] <= target; i++) {
            // 要对同一树层使用过的元素进行跳过,所以条件为i>startindex,因为递归进入的一定不满足这个条件,故不会进入这个分支
            if (i > startIndex && candidates[i] == candidates[i - 1]) {
                continue;
            }
            sum += candidates[i];
            path.push_back(candidates[i]);
            backtracking(candidates, target, sum, i + 1); // 和组合总和的区别1,这里是i+1,每个数字在每个组合中只能使用一次
            sum -= candidates[i];
            path.pop_back();
        }
    }

public:
    vector<vector<int>> combinationSum2(vector<int>& candidates, int target) {
        path.clear();
        result.clear();
        // 首先把给candidates排序,让其相同的元素都挨在一起。
        sort(candidates.begin(), candidates.end());
        backtracking(candidates, target, 0, 0);
        return result;
    }
};

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1589043.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Pytest精通指南(06)Fixture scope作用域详解

文章目录 前言Scope 作用域写在测试用例函数文件写在conftest.py文件作用域总结验证默认作用域验证执行顺序遵循验证类中的fixture作用域验证重名fixture作用域 前言 从前文中&#xff0c;我们已经知道固件&#xff08;fixture&#xff09;的概念、原理、作用域&#xff0c;并且…

TMS320F280049 EPWM模块--PC子模块(5)

下图是PC子模块和其他子模块的联系图。可以看出&#xff0c;PC接收DB的输出&#xff0c;然后处理后给到TZ。 下图是PC子模块的内部框图。可以看到&#xff1a; 1&#xff09;PC子模块功能可以被bypass&#xff1b; 2&#xff09;one shot和divider的时钟是epwm时钟的8分频&am…

秋招数据库学习2(20240408-20240412共10道)

由于感觉数据库难度可能暂时面试用不到&#xff0c;就先不刷啦 20240408 1.从不订购的客户 SELECT Name AS Customers FROM Customers C LEFT JOIN Orders O ON C.Id O.CustomerId WHERE CustomerId is nullselect customers.name as Customers from Customers wher…

购物车实现

目录 1.购物车常见的实现方式 2.购物车数据结构介绍 3.实例分析 1.controller层 2.service层 1.购物车常见的实现方式 方式一&#xff1a;存储到数据库 性能存在瓶颈方式二&#xff1a;前端本地存储 localstorage在浏览器中存储 key/value 对&#xff0c;没有过期时间。s…

什么是电子巡查系统?

电子巡检系统&#xff0c;通常又被叫做设备巡检系统&#xff0c;一种利用现代化技术进行设备管理和维护的系统。 通过结合软件应用程序、移动设备和云端服务&#xff0c;设备巡检系统能够实现对设备的全面监测、定位和记录。它使得设备管理人员能够轻松地安排、执行和跟踪设备…

通讯录项目(用c语言实现)

一.什么是通讯录 通讯录是一种用于存储联系人信息的工具或应用程序。它是一种电子化的地址簿&#xff0c;用于记录和管理个人、机构或组织的联系方式&#xff0c;如姓名、电话号码、电子邮件地址和邮寄地址等。通讯录的目的是方便用户在需要时查找和联系他人。 通讯录通常以列…

数据结构(算法)

总结&#xff0c;建议看EXCEL的《算法》页签&#xff0c;不然感觉有点乱 备注原理/步骤时间复杂度空间复杂度串的应用模式匹配简单/暴力O(mn) KMP  O(mn) 树的应用树哈夫曼树1、带权路径长度WPL 2、外部排序-最佳归并树1、哈夫曼树的度&#xff0c;只有0和m&#xff08;m叉…

Linux——十个槽位,RWX

Linux——RWX 十个槽位 - 表示文件 d 表示文件夹 l 表示软链接 r权&#xff0c;针对文件可以查看文件内容 针对文件夹&#xff0c;可以查看文件夹内容&#xff0c;如ls命令 w权&#xff0c;针对表示可以修改此文件 针对文件夹&#xff0c;可以在文件夹内&#…

深入理解k8s kube-proxy

1、概述 我觉得只要大家知道kube-proxy是用来配置网络规则的而不是转发流量的&#xff0c;真正的流量由iptables/ipvs来转发就可以了。 网络是k8s的一个关键部分。理解k8s中网络组件如何工作可以帮助更好的设计和配置我们的应用。 kube-proxy就是K8s网络的核心组件。它把我们…

C++11 数据结构1 线性表的概念,线性表的顺序存储,实现,测试

一 线性表的概念 线性结构是一种最简单且常用的数据结构。 线性结构的基本特点是节点之间满足线性关系。 本章讨论的动态数组、链表、栈、队列都属于线性结构。 他们的共同之处&#xff0c;是节点中有且只有一个开始节点和终端节点。按这种关系&#xff0c;可以把它们的所有…

选择正确的Go Module Path

最近我在查看项目代码时&#xff0c;注意到有人在go.mod文件中将module path写为com.example.foo了。根据这个写法&#xff0c;相信屏幕前的读者也可以推断出这位开发人员可能是从Java阵营转到Go的。实际开发中可能有很多开发者会使用类似的内容作为module path&#xff0c;但这…

使用快捷回复软件的好处

在现代的客服工作中&#xff0c;尤其是店铺大促期间&#xff0c;咨询量的激增往往让客服人员应接不暇。即使打字速度再快&#xff0c;也难以跟上源源不断的客流。想应对这样的情况&#xff0c;快捷回复软件就非常适合客服人员了。 以我个人正在使用的客服宝为例&#xff0c;我想…

(Java)数据结构——图(第五节)Kruskal的实现最小生成树(MST)

前言 本博客是博主用于复习数据结构以及算法的博客&#xff0c;如果疏忽出现错误&#xff0c;还望各位指正。 Kruskal算法&#xff08;Kruskal的实现原理&#xff09; Kruskal算法的原理&#xff1a; 就是每次取最小的边&#xff0c;看看是不是与已经选择的构成回路&#x…

面向对象设计原则实验“依赖倒置原则”

高层模块不应该依赖于低层模块。二者都应该依赖于抽象。抽象不应该依赖于细节。细节应该依赖于抽象。 &#xff08;开闭原则、里氏代换原则和依赖倒转原则的三个实例很相似&#xff0c;原因是它之间的关系很紧密&#xff0c;在实现很多重构时通常需要同时使用这三个原则。开闭…

计算机网络-TCP断开连接阶段错误应对机制

连接断开阶段 四次挥手机制&#xff1a;TCP连接的断开需要四次挥手&#xff0c;这是因为双方都需要独立地关闭数据传输。第二次和第三次挥手不能合并&#xff0c;因为在回复第二次挥手的时候&#xff0c;可能还有数据没有接收完成&#xff0c;所以需要先回复ACK报文&#xff0c…

css面试题---场景应用

1、实现一个三角形 css一般用border属性实现三角形。 div {width: 0;height: 0;border: 100px solid;border-color: orange blue red green; } // 三角形一 div {width: 0;height: 0;border-top: 50px solid red;border-right: 50px solid transparent;border-left: 50px soli…

竞赛 图像识别-人脸识别与疲劳检测 - python opencv

文章目录 0 前言1 课题背景2 Dlib人脸识别2.1 简介2.2 Dlib优点2.3 相关代码2.4 人脸数据库2.5 人脸录入加识别效果 3 疲劳检测算法3.1 眼睛检测算法3.3 点头检测算法 4 PyQt54.1 简介4.2相关界面代码 5 最后 0 前言 &#x1f525; 优质竞赛项目系列&#xff0c;今天要分享的是…

免费HTTPS证书在线申请

申请HTTPS证书的流程如下&#xff1a; 1. 确定证书类型&#xff1a; - 根据你的网站用途&#xff08;如个人博客、企业官网、电商、金融等&#xff09;和信任级别要求&#xff0c;选择适合的证书类型&#xff0c;如DV&#xff08;域名验证&#xff09;、OV&#xff08;组织验证…

[论文笔记] Pai-megatron Qwen1.5-14B-CT 后预训练 踩坑记录

1. 模型权重转换报错 hf2mcore_1.5_v2.py 报错为: /mnt/cpfs/kexin/dlc_code/qwen1.5/PAI-Megatron-Patch/toolkits/model_checkpoints_convertor/qwen/hf2mcore_1.5_v2.py 正确文件替换如下,更改了477行,删除了 args.hidden_size 这个维度,在tp>1时也支持转换: eli…

如何将h5网页打包成iOS苹果IPA文件

哈喽&#xff0c;大家好呀&#xff0c;淼淼又来和大家见面啦&#xff0c;最近有很多小伙伴都被难住了&#xff0c;是什么问题给他们都难住了呢&#xff0c;许多小伙伴都说想要把h5网页打包成iOS苹果IPA文件&#xff0c;但是却不知道具体怎么操作&#xff0c;是怎么样的一个流程…