项目文章| Plant CellDAP-seq解析草莓NAC转录因子FvRIF的调控网络

news2024/11/27 8:30:24

DAP-seq是一种体外研究蛋白与DNA结合的技术,该技术利用麦胚乳表达体系表达目标蛋白然后与基因组DNA文库体外孵育,得到目标蛋白的结合信息。与ChIP-seq和CUT&Tag不同,DAP-seq不需要抗体,在植物中应用更为广泛。今天我们分享一篇2023年发表在The Plant Cell(影响因子:10.676)的文章“Deciphering the regulatory network of the NAC transcription factor FvRIF, a key regulator of strawberry (Fragaria vesca) fruit ripening”。

作者发现二倍体草莓Fragaria vesca中的FvRIF是控制果实成熟的关键调节因子,FvRIF的敲除突变导致果实不能成熟发育。DAP-seq与转录组结合表明,2080个基因是FvRIF介导的调控的直接靶点,包括与果实成熟的各个方面相关的基因。研究表明,FvRIF通过直接调节相关核心基因来调节花青素生物合成和果实成熟。此外,还证明FvRIF与MAP激酶6(FvMAPK6)相互作用并作为其底物,MAP激酶6通过在Thr-310磷酸化FvRIF来调节FvRIF。研究结果揭示了FvRIF介导的转录调控网络在控制草莓果实成熟中的作用,并强调了磷酸化修饰对FvRIF成熟活性的生理意义。爱基百客提供了DAP-seq的分析支持。

研究路线

研究结果

1. 草莓果实成熟控制的主调节因子FvRIF

作者在二倍体草莓的基因组中鉴定了 FvRIF (FvH4_3g20700),它是来自 F. × ananassa (maker-Fvb3-4-augustus-gene-182.31) 的 FaRIF 的直系同源物,与 FaRIF 具有 100% 的蛋白质序列同一性。系统发育分析表明,FvRIF 与甜瓜 (Cucumis melo) 中的 CmNAC-NOR(未成熟)和甜橙 (Citrus sinensis) 中的 CsNAC56 关系最密切,其次是番茄 (Solanum lycopersicum) 中的 SlNOR 和 SlNOR-like1 以及 NtNAC56-like烟草(Nicotiana tabacum)中(图 1A)。作者通过RT-qPCR分析了F. vesca和F. × ananassa中的RIF表达,结果表明FvRIF在果实中高表达,并在二倍体草莓的成熟过程中增加(图1B)。

作者还通过CRISPR/Cas9敲除得到突变体植株Fvrif-6和Fvrif-13;Fvrif-6和Fvrif-13突变系显示出类似且明显的抑制成熟表型。(图1G)。突变体中的果实未能完全成熟,并在最后成熟阶段保持白色,这表明FvRIF在控制草莓果实成熟中起主要调节作用。与颜色表型一致,在花后28天(DPA),Fvrif品系的果实中花青素含量下降了>90%(图1H)。相反,Fvrif品系的果实软化受到显著抑制,与野生型相比,其果实硬度高出约18倍(图1I)。

图1:FvRIF的突变导致草莓果实成熟受到抑制

2. FvRIF 结合位点的全基因组鉴定

为了更好地理解FvRIF介导的果实成熟的转录调控,作者进行了DAP-seq来找寻FvRIF结合位点;在两个生物重复中检测到总共9902个富集峰,对应于7899个基因(图2A),并且结合位点高度集中在转录起始位点(TSS)上(图2B);大多数结合位点(37.0%)位于启动子区内(TSS上游2kb)(图2C),这与FvRIF是一种具有DNA结合能力和基因调控活性的TF一致。研究使用Homer工具鉴定了4个富集的基序。最富集的基序由TACGTACGTAAC代表,其占4649个FvRIF结合峰(图2D)。该基序的核苷酸序列为CGT[G/A],这是一种先前报道过的NAC识别基序,证实了DAP-seq数据的可靠性。作者还鉴定出来了另外3个基序,TAGCTA(A/G)C、CTTC(A/G)TTT和AGAAAGAA,它们分别存在于4473、3500和2222个FvRIF结合峰中(图2D)。对含有FvRIF结合位点的基因GO富集分析显示主要在“转录调节”、“植物激素介导的信号通路”、“细胞壁组织或生物发生的调节”和“发育成熟”等过程(图2E),表明FvRIF可能直接控制与果实成熟相关的多种生物通路。

图2:通过DAP-seq进行FvRIF结合位点的全基因组鉴定

3. 通过转录组分析鉴定 FvRIF 调控基因

为了鉴定在果实成熟过程中受 FvRIF 转录调控的基因,作者使用野生型和突变体(Fvrif-6 和 Fvrif-13)的 3 个独立生物重复的果实,通过RNA-seq进行了比较转录组分析。分别得到Fvrif-6与WT的差异基因以及Fvrif-13和WT的差异基因信息。通过韦恩图分析得到共上调2747个基因,共下调3959个基因。GO富集分析得到“ABA激活信号通路的调节”、“次级代谢过程的调节”和“葡萄糖代谢过程”等过程的富集(图3E),证实FvRIF在控制果实发育和成熟中的功能。此外,研究还得到了一些众所周知的成熟相关基因,如编码查尔酮合成酶(CHS)的FvCHS1,参与类黄酮生物合成,编码果胶裂解酶(PL)的FvPL2(负责细胞壁分解)和编码9-顺式-环氧类胡萝卜素双加氧酶的FvNCED5(参与ABA生物合成),在Fvrif系中表现mRNA水平的差异表达。

图3:基于转录组的测定FvRIF的调控基因

4. FvRIF调节的直接靶基因的测定

DAP-seq和RNA-seq联合分析确定 FvRIF 调节的直接靶基因,得到2,080 个共同基因,表明它们是 FvRIF 的直接靶点(图 4A)。其中,769个基因(37.0%)代表FvRIF正向调控的靶标,在Fvrif系中下调,而1,311个基因(63.0%)被认为是FvRIF负向调控的靶标,在Fvrif突变系中上调(图4A)。KEGG通路富集分析表明,FvRIF调控的直接靶基因参与多种代谢通路,包括“植物激素信号转导”、“淀粉和蔗糖代谢”、“苯丙素生物合成”和“类黄酮”生物合成”(图4B)。联合分析结果表明与FvRIF在控制果实成熟中的功能一致,鉴定了与花青素生物合成、细胞壁降解、糖代谢和芳香化合物产生相关的多个基因作为FvRIF的直接靶基因(图4C至F)

图4:FvRIF直接调控靶基因的鉴定

5. FvRIF直接调控花青素生物合成途径中的关键基因

花青素是草莓果实中的主要色素,由苯丙氨酸解氨酶(PAL)、CHS、查耳酮黄烷酮异构酶(CHI)、黄烷酮3-羟化酶(F3H)、二氢黄酮醇4-还原酶(DFR)等一系列酶生物合成。)和无色花青素双加氧酶/花青素合酶(ANS)。花青素生物合成途径中的 6 个基因是 FvRIF 直接调控的靶标(图 4C),这与 Fvrif 果实花青素含量与野生型相比的急剧下降一致(图 4C)。并支持 FvRIF 在此途径中的直接作用。因此,作者选择了4个在DAP-seq分析中启动子区域富集值高的基因,即FvCHS1、FvDFR、FvANS和FvUFGT,并通过体外EMSA实验和体内实验ChIP-qPCR进行了验证。RNA-seq分析显示,与野生型相比,FvCHS1、FvDFR、FvANS和FvUFGT在Fvrif-6和Fvrif-13突变系的果实中的表达显著降低(图5E)。RT-qPCR分析证实了RNA-seq结果(图5F),表明FvRIF正调节这些基因的表达。总之数据表明,FvRIF是草莓果实花青素生物合成的关键正转录调控因子。

图5:FvRIF介导的草莓花青素生物合成基因的直接调控

6. FvRIF 直接调节参与果实软化的核心基因

果实软化是由一组细胞壁降解酶催化的,是果实成熟过程中最重要的特征之一。DAP-seq 与 RNA-seq 分析确定了参与果实软化的 7 个基因作为直接 FvRIF 调节的靶标(图 4D)。作者选择了其中 4 个基因进行验证:PL 基因 FvPL2、多聚半乳糖醛酸酶 (PG) 基因 FvPG2、木葡聚糖内转葡糖基酶/水解酶基因 FvXTH 和扩展蛋白 (EXP) 基因 FvEXP3。在 DAP-seq 分析中,所有 4 个基因在其启动子区域均显示富集峰(图 6A)。Y1H分析表明FvRIF与所选基因的启动子相互作用(图6B)。此外,EMSA和ChIP-qPCR测定证实FvRIF可以在体外和体内直接结合这些基因的启动子(图6C和D)。RNA-seq和RT-qPCR分析显示,与野生型相比,Fvrif-6和Fvrif-13突变系的FvPL2、FvPG2和FvEXP3基因显著下调,表明Fvrif正调节这些基因。相反,FvXTH显示出相反的表达模式(图6,E和F),这与其之前报道的与果实软化的负相关一致。总之,这些结果表明,FvRIF在直接控制草莓果实软化相关基因方面起着正转录调节因子的作用。

图6:FvRIF介导的果实软化相关基因的直接调控

7. FvRIF直接调控参与果实成熟的TF基因

DAP-seq与RNA-seq相结合揭示了总共137个TF编码基因作为 FvRIF 的直接靶标。这些 TF 基因中只有 4 个:FvMYB10、FvSEP3、FvSPT 和 FvARF2 先前被报道参与草莓成熟的调控。FvMYB10 是花青素生物合成的关键正向调节因子, FvSEP3(一种 MADS-box TF)和 FvSPT (Spatula),一种基本螺旋-环-螺旋 (bHLH) ) TF 对于调节果实发育和成熟是必需的。相比之下,FvARF2 对果实成熟和质量产生负向调节作用。DAP-seq 分析揭示了这 4 个 TF 基因启动子区域的 FvRIF 结合峰(图 7A)。通过酵母中的 Y1H 分析检测到 FvRIF 和所有 4 个基因的启动子之间的相互作用(图 7B)。还进行了EMSA和ChIP-qPCR测定,这支持了FvRIF在体外和体内特异性结合这些TF基因的启动子的观点(图7,C和D)。通过RNA-seq进行的表达分析(图7E)和RT-qPCR(图7F)显示,相对于野生型,在突变系(Fvrif-6和Fvrif-13)的果实中,FvMYB10、FvSEP3和FvSPT表现出降低的表达水平,而FvARF2表现出增加的表达水平。这些结果表明,FvRIF在控制果实成熟方面发挥作用。

图7:FvRIF介导的TF基因在果实成熟过程中的直接调控

8. FvRIF 与 FvMAPK6 相互作用

作为一种经典的翻译后修饰,蛋白质磷酸化调节 TF 的活性。作者通过 KinasePhos (http://kinasephos.mbc.nctu.edu.tw/predict.php) 对 FvRIF 中的磷酸化位点进行了预测分析。该分析预测 Thr-310 是一个假定的磷酸化位点,其同源激酶似乎是 MAPK。因此,作者假设 FvRIF 可能受到 MAPK 介导的磷酸化;用 F. vesca 中注释的 12 个 MAPK 蛋白针对 FvRIF 进行了酵母双杂交(Y2H),结果表明 FvRIF 与 FvMAPK6 相互作用,但不与任何其他 MAPK 相互作用(图 8A)。然后还利用双荧光素酶证实了这一观点(图 8B、E),这表明 FvRIF 与FvMAPK6相互作用。

图8:FvRIF和FvMAPK6之间的相互作用

9. FvMAPK6 在 Thr-310 磷酸化 FvRIF

作者使用 Phos-tag SDS–PAGE研究 FvRIF 是否被 FvMAPK6 磷酸化;其中用激酶 FvMKK4 作为假定的激活剂。如图9A所示,在没有被组成型活性变体FvMKK4DD激活的情况下,FvMAPK6不能磷酸化FvRIF,这表明FvMAPK6通过其上游激酶FvMKK4磷酸化诱导的激活的重要性。重要的是,FvMKK4DD 的存在导致 FvRIF (pFvRIF) 磷酸化,如 Phos-tag 凝胶中的迁移率变化所证明的那样 (图 9A)。此外,在存在 lambda 磷酸酶 (λ-PPase) 的情况下,磷酸化形式的丰度降低(图 9B),这证实了上部条带确实是由 FvMKK4-FvMAPK6 模块激活导致的磷酸化 FvRIF。

然后,作者对磷酸化FvRIF进行LC-MS分析,从而鉴定出5个高置信度磷酸化位点,Tyr-271、Ser-283、Ser-294、Ser-299和Thr-310(图9C)。定点突变分析显示,所有5个磷酸化位点(FvRIF5A)的突变显著降低了FvMAPK6依赖性pFvRIF(图9D)。进一步的分析表明,只有FvRIFT310A(Thr-310被丙氨酸取代[A])在FvMAPK6诱导的FvRIF磷酸化中表现出显著降低,而FvRIFY271A、FvRIFS283A、FvRIFS294A和FvRIFS299A表现出很少的作用(图9D),表明Thr-310是负责FvMAPK5介导的pFvRIF的关键位点。

最后,为了确定FvRIF的转录活性是否受其磷酸化状态的调节,作者进行了GUS转录活性测定。结果如图9E所示,FvRIF激活了GUS的转录。还得出FvMAPK6依赖性pFvRIF显著增加了GUS转录,而FvRIFT310A变体完全消除了FvCHS1pro:GUS报告子的反式激活(图9E)。总之,这些数据表明,FvMKK4–FvMAPK6模块在Thr-310处的pFvRIF对正向调节其活性至关重要。

图9:FvMAPK6介导的FvRIF磷酸化发生在Thr-310

10. 草莓中 FvRIF 的激活离不开磷酸化

为了确认 FvRIF 磷酸化在体内调节其活性,作者在 Fvrif-13 突变体的果实中瞬时表达了各种构建体:完整的 FvRIF或其突变变体 FvRIFT310A,其中关键磷酸化位点(Thr-310)突变为A。如图10A所示,完整的FvRIF而非其突变变体FvRIFT310A挽救了Fvrif-13突变体的成熟缺陷。WB证实了FvRIF和FvRIFT310A的表达(图10B)。在瞬时表达完整FvRIF的Fvrif-13突变体的果实中,花青素含量显着增加(图10C),同时参与花青素生物合成的基因表达水平增加,包括FvCHS1、FvDFR、FvANS和FvUFGT(图10C、D)。相比之下, Fvrif-13突变体果实中花青素含量或基因表达几乎没有变化。

基于研究结果,作者提出了一个FvRIF介导的草莓果实成熟转录调控模型(图10E)。在草莓果实成熟过程中,蛋白激酶FvMAPK6作用于FvMKK4的下游,磷酸化FvRIF,从而促进其转录活性。激活的FvRIF通过直接或在ABA依赖性途径中调节成熟相关基因来控制果实成熟,这反过来又通过正调控FvRIF的表达。FvRIF还通过靶向许多TF基因(即FvMYB10、FvSEP3、FvSPT和FvARF2)发挥作用,这些基因通过控制成熟相关基因来调节果实成熟。

图10:FvRIF磷酸化是其在草莓中活化所必需的

总 结

NAC转录因子 FvRIF被认为是草莓果实成熟的关键调节因子,作者通过DAP-seq和RNA-seq得到FvRIF调控草莓花青素生物合成途径中的关键基因、参与果实软化的核心基因、参与果实成熟的TF基因;并通过ChIP-qPCR、EMSA、RT-qPCR进行了验证。还利用CO-IP、酵母双杂以及双荧光素酶验证FvRIF与与 FvMAPK6互作,并且通过LC-MS等实验得出FvRIF 的激活离不开磷酸化;提出了FvRIF介导的草莓果实成熟转录调控模型。该研究为我们提供了转录因子经典的上下游研究思路,大家可以参考着设计实验哦,有做转录因子相关的实验可以找爱基百客。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1582248.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java开发面试题分享

目录 1、简述MyISAM和InnoDB的区别 2、简述Hash和B树索引的区别 3、简述MyBatis的实现逻辑 4、#{}和${}的区别 5、简述Mybatis的优缺点 6、当实体类中的属性名和表中的字段名不一样时怎么办? 7、resultType与resultMap的区别 8、如何执行批量插入 9、Mybat…

[中级]软考_软件设计_计算机组成与体系结构_12_概述及回顾

概述及回顾 总纲考情分析与分值海明校验码计算公式重点 总纲 考情分析与分值 海明校验码计算公式 2 r m r 1 2^r mr1 2rmr1 重点 数据的表示是计算题型的基础计算机组成中的CPU组成计算机组成中的存储系统,是核心重点的考察CISC与RISC及流水线执行时间的求取

YOLOv8在windows平台的C++推理

前言 YOLOv8很多人很多人很熟悉了,现在V9都已经出来了,学习没有比别人更新的快! 个人记录一下在windows平台使用C++推理的记录。 环境配置 YOLOv8的传统的环境配置,就不多说,网上很多参考教程。 需要注意的点就是,本次C++推理需要使用OPENCV的DNN模块,所以我们需要下…

每日OJ题_BFS解决FloodFill①_力扣733. 图像渲染

目录 BFS解决FloodFill简介 力扣733. 图像渲染 解析代码 BFS解决FloodFill简介 FloodeFill算法即填充算法,中文:洪水灌溉,算法原理就是从一个点开始向四周扩散,向周围可以走到的点填充颜色,直到将可扩散到的点全部填…

ElasticSearch分词检索

1. 倒排索引:表示一种数据结构,分词词条与文档id集合的隐射关系 2. 它跟关系型数据库是一种互补的关系,因为关系型数据库支持事务操作,满足ACID原则 3. 索引库的文档字段只允许新增不允许修改 1.创建索引库 put /索引库名称2.1 …

Altair® (澳汰尔)Inspire™ Render —— 强大的 3D 渲染和动画工具

Inspire Render 是一种全新 3D 渲染和动画工具,可供创新设计师、建筑师和数字艺术家以前所未有的速度快速制作精美的产品演示。 借助基于物理特性的内置高品质全局照明渲染引擎 Thea Render,可以快速创建、修改和拖放各种材质并添加照明环境&#xff0c…

风电场智能化转型基于ARM工控机的HDMI数据实时监控显示

全球能源结构不断调整的大背景下,智能电网、太阳能发电、风能发电等清洁能源领域正经历着一场由技术创新引领的深刻变革。在这场变革中,ARM架构的工控机凭借其出色的性能、低功耗及高度可定制化的特点,正在成为能源管理系统的核心组件&#x…

LeetCode-1702. 修改后的最大二进制字符串【贪心 字符串】

LeetCode-1702. 修改后的最大二进制字符串【贪心 字符串】 题目描述:解题思路一:贪心,几个规则。解题思路二:当前遇到0,去找下一个0的位置,将当前变为00。通过解题思路三:另一种贪心写法。 题目…

从电工到电气工程师:PLC编程之路

在当前的工业自动化时代,电气工程师的角色变得越来越重要,特别是在掌握了PLC(可编程逻辑控制器)编程技能后,这一技能不仅能够大幅提升生产效率,还能为企业节省大量成本。对于那些从事电工职业的人来说&…

中科数安 || 透明加密是怎么防止公司办公终端电脑文件资料外泄的?

#企业电脑数据防泄密软件# 中科数安作为一家专注于信息安全领域的公司,其提供的透明加密解决方案旨在通过以下机制来防止公司办公终端电脑上的文件资料外泄: 中科数安 || 公司办公透明加密系统 PC地址:www.weaem.com 实时加密: …

《由浅入深学习SAP财务》:第2章 总账模块 - 2.6 定期处理 - 2.6.1 月末操作:自动清账

2.6.1 月末操作:自动清账 清账是指会计科目的借贷挂账后的核销,包括客户、供应商和实行未清项管理的总账科目等。 总账模块实行未清项管理的科目有GR/IR(Goods Receipt/Invoice Receipt)、银行存款-清账(较少使…

O2OA(翱途)开发平台-如何基于nginx上下文分发的方式快速集群部署

O2OA(翱途)开发平台[下称O2OA开发平台或者O2OA]使用分布式架构设计,提供灵活的扩展方案用于对服务器的负载能力进行扩展,保障系统的高可用性。本篇主要介绍如何基于nginx上下文分发的方式快速集群部署。 O2OA平台应用结构 O2OA服务器默认启动5个服务&am…

51单片机 DS1302

DS1302 实现流程 将提供的ds1302底层参考程序拷贝到工程下 注意在ds1302.c中可能硬件引脚没有定义,注意去看一下。还有头文件什么的在ds1302中记得加上 参考代码: #include "reg52.h" #include "ds1302.h"unsigned char Write_…

Linux网络名称空间与网络协议栈:区别、联系与理解

在深入探讨Linux网络名称空间和网络协议栈之间的区别和联系之前,重要的是先明确这两个概念的定义。网络名称空间是Linux提供的一种虚拟化技术,允许在同一物理机器上运行的不同进程组拥有独立的网络环境🏢。而网络协议栈是操作系统用于实现网络…

【趣味学算法】14_梅森素数

注: 本系列仅为个人学习笔记,学习内容为《算法小讲堂》(视频传送门),通俗易懂适合编程入门小白,需要具备python语言基础,本人小白,如内容有误感谢您的批评指正 梅森数(Me…

从“执行SQL”到“返回结果”,数据库到底发生了什么?

SQL 全称是 Structured Query Language 结构化查询语言。由于其简单易学、完整安全、灵活且具备高可扩展性,SQL 如今已经成为标准的关系型数据库管理语言。 当连接到数据库,写下一条 SQL 语句,点击“执行”, SELECT name, compa…

1.Spring的核心思想 —— IOC和DI

1. Spring是什么? 简单的说,Spring其实指的是Spring Framework(Spring框架),是一个开源框架。 如果要用一句话概括:它是包含众多工具方法的IOC(Inverse of Control控制反转)容器。…

STC89C52学习笔记(四)

STC89C52学习笔记(四) 综述:本文讲述了在STC89C51中数码管、模块化编程、LCD1602的使用。 一、数码管 1.数码管显示原理 位选:对74HC138芯片的输入端的配置(P22、P23、P24),来选择实现位选&…

相机模型浅析

相机模型 文章目录 相机模型四个坐标系针孔相机模型世界坐标系到相机坐标系相机坐标系到图像坐标系图像坐标到像素坐标 四个坐标系 ①世界坐标系:是客观三维世界的绝对坐标系,也称客观坐标系。因为数码相机安放在三维空间中,我们需要世界坐标…

Java springmvc 参数名用is开头导致为null

因为最近在整理一些源码和编写规范,这里写一下只是记录几年前自己遇到的问题,好久都忘了,还是写下来比较好。 问题记录:由于变量使用了boolean,并且变量名是is开头的,由于java机制boolean默认是false&#…