目录
前言:
算法解析
Kahn算法
DFS算法
总结:
参考资料
前言:
如何确定代码源文件的编译依赖关系?
我们知道,一个完整的项目往往会包含很多代码源文件。编译器在编译整个项目的时候,需要按照依赖关系,依次编译每个源文件。比如,A.cpp 依赖 B.cpp,那在编译的时候,编译器需要先编译 B.cpp,才能编译 A.cpp。
编译器通过分析源文件或者程序员事先写好的编译配置文件(比如 Makefile 文件),来获取这种局部的依赖关系。那编译器又该如何通过源文件两两之间的局部依赖关系,确定一个全局的编译顺序呢?
算法解析
这个问题的解决思路与“图”这种数据结构的一个经典算法“拓扑排序算法”有关。那什么是拓扑排序呢?这个概念很好理解,我们先来看一个生活中的拓扑排序的例子。
我们在穿衣服的时候都有一定的顺序,我们可以把这种顺序想成,衣服与衣服之间有一定的依赖关系。比如说,你必须先穿袜子才能穿鞋,先穿内裤才能穿秋裤。假设我们现在有八件衣服要穿,它们之间的两两依赖关系我们已经很清楚了,那如何安排一个穿衣序列,能够满足所有的两两之间的依赖关系?
拓扑排序的原理非常简单,我们的重点应该放到拓扑排序的实现上面。
算法是构建在具体的数据结构之上的。针对这个问题,我们先来看下,如何将问题背景抽象成具体的数据结构?
我们可以把源文件与源文件之间的依赖关系,抽象成一个有向图。每个源文件对应图中的一个顶点,源文件之间的依赖关系就是顶点之间的边。
如果 a 先于 b 执行,也就是说 b 依赖于 a,那么就在顶点 a 和顶点 b 之间,构建一条从 a 指向 b 的边。而且,这个图不仅要是有向图,还要是一个有向无环图,也就是不能存在像 a->b->c->a 这样的循环依赖关系。因为图中一旦出现环,拓扑排序就无法工作了。实际上,拓扑排序本身就是基于有向无环图的一个算法。
具体代码如下:
public class Graph {
private int v; // 顶点的个数
private LinkedList<Integer> adj[]; // 邻接表
public Graph(int v) {
this.v = v;
adj = new LinkedList[v];
for (int i=0; i<v; ++i) {
adj[i] = new LinkedList<>();
}
}
public void addEdge(int s, int t) { // s先于t,边s->t
adj[s].add(t);
}
}
拓扑排序有两种实现方法,都不难理解。它们分别是 Kahn 算法和 DFS 深度优先搜索算法。我们依次来看下它们都是怎么工作的。
Kahn算法
Kahn 算法实际上用的是贪心算法思想,思路非常简单、好懂。
定义数据结构的时候,如果 s 需要先于 t 执行,那就添加一条 s 指向 t 的边。所以,如果某个顶点入度为 0, 也就表示,没有任何顶点必须先于这个顶点执行,那么这个顶点就可以执行了。
我们先从图中,找出一个入度为 0 的顶点,将其输出到拓扑排序的结果序列中(对应代码中就是把它打印出来),并且把这个顶点从图中删除(也就是把这个顶点可达的顶点的入度都减 1)。我们循环执行上面的过程,直到所有的顶点都被输出。最后输出的序列,就是满足局部依赖关系的拓扑排序。
具体的代码实现如下:
public void topoSortByKahn() {
int[] inDegree = new int[v]; // 统计每个顶点的入度
for (int i = 0; i < v; ++i) {
for (int j = 0; j < adj[i].size(); ++j) {
int w = adj[i].get(j); // i->w
inDegree[w]++;
}
}
LinkedList<Integer> queue = new LinkedList<>();
for (int i = 0; i < v; ++i) {
if (inDegree[i] == 0) queue.add(i);
}
while (!queue.isEmpty()) {
int i = queue.remove();
System.out.print("->" + i);
for (int j = 0; j < adj[i].size(); ++j) {
int k = adj[i].get(j);
inDegree[k]--;
if (inDegree[k] == 0) queue.add(k);
}
}
}
DFS算法
图上的深度优先搜索我们前面已经讲过了,实际上,拓扑排序也可以用深度优先搜索来实现。不过这里的名字要稍微改下,更加确切的说法应该是深度优先遍历,遍历图中的所有顶点,而非只是搜索一个顶点到另一个顶点的路径。
具体的代码如下:
public void topoSortByDFS() {
// 先构建逆邻接表,边s->t表示,s依赖于t,t先于s
LinkedList<Integer> inverseAdj[] = new LinkedList[v];
for (int i = 0; i < v; ++i) { // 申请空间
inverseAdj[i] = new LinkedList<>();
}
for (int i = 0; i < v; ++i) { // 通过邻接表生成逆邻接表
for (int j = 0; j < adj[i].size(); ++j) {
int w = adj[i].get(j); // i->w
inverseAdj[w].add(i); // w->i
}
}
boolean[] visited = new boolean[v];
for (int i = 0; i < v; ++i) { // 深度优先遍历图
if (visited[i] == false) {
visited[i] = true;
dfs(i, inverseAdj, visited);
}
}
}
private void dfs(
int vertex, LinkedList<Integer> inverseAdj[], boolean[] visited) {
for (int i = 0; i < inverseAdj[vertex].size(); ++i) {
int w = inverseAdj[vertex].get(i);
if (visited[w] == true) continue;
visited[w] = true;
dfs(w, inverseAdj, visited);
} // 先把vertex这个顶点可达的所有顶点都打印出来之后,再打印它自己
System.out.print("->" + vertex);
}
第一部分是通过邻接表构造逆邻接表。邻接表中,边 s->t 表示 s 先于 t 执行,也就是 t 要依赖 s。在逆邻接表中,边 s->t 表示 s 依赖于 t,s 后于 t 执行。为什么这么转化呢?这个跟我们这个算法的实现思想有关。
第二部分是这个算法的核心,也就是递归处理每个顶点。对于顶点 vertex 来说,我们先输出它可达的所有顶点,也就是说,先把它依赖的所有的顶点输出了,然后再输出自己。
总结:
拓扑排序应用非常广泛,解决的问题的模型也非常一致。凡是需要通过局部顺序来推导全局顺序的,一般都能用拓扑排序来解决。除此之外,拓扑排序还能检测图中环的存在。对于 Kahn 算法来说,如果最后输出出来的顶点个数,少于图中顶点个数,图中还有入度不是 0 的顶点,那就说明,图中存在环。
参考资料
本章内容来源于对王争大佬的《数据结构与算法之美》的专栏。
43 | 拓扑排序:如何确定代码源文件的编译依赖关系?-极客时间