二叉搜索树
左子树的结点都比当前结点小,右子树的结点都比当前结点大。
构造二叉搜索树:
let arr = [3, 4, 7, 5, 2]
function Node(value) {
this.value = value
this.left = null
this.right = null
}
/**
* 添加结点
* @param root 当前结点
* @param num 新的结点的值
*/
function addNode(root, num) {
if (root == null) return
if (root.value == num) return
if (root.value < num) {
if (root.right == null) root.right = new Node(num)
else addNode(root.right, num)
} else {
if (root.left == null) root.left = new Node(num)
else addNode(root.left, num)
}
}
function binarySearchTree(arr) {
if (arr == null || arr.length == 0) return null
let root = new Node(arr[0])
for (let i = 1; i < arr.length; i++) {
addNode(root, arr[i])
}
return root
}
let root = binarySearchTree(arr)
console.dir(root)
二叉搜索树的应用:
let arr = [3, 4, 7, 5, 2]
function Node(value) {
this.value = value
this.left = null
this.right = null
}
/**
* 添加结点
* @param root 当前结点
* @param num 新的结点的值
*/
function addNode(root, num) {
if (root == null) return
if (root.value == num) return
if (root.value < num) {
if (root.right == null) root.right = new Node(num)
else addNode(root.right, num)
} else {
if (root.left == null) root.left = new Node(num)
else addNode(root.left, num)
}
}
function binarySearchTree(arr) {
if (arr == null || arr.length == 0) return null
let root = new Node(arr[0])
for (let i = 1; i < arr.length; i++) {
addNode(root, arr[i])
}
return root
}
function searchByTree (root,target) {
if (root == null) return false
if (root.value == target) return true
if (root.value > target) return searchByTree(root.left, target)
else return searchByTree(root.right, target)
}
let root = binarySearchTree(arr)
console.log(searchByTree(root, 4))
平衡二叉树
- 根节点的左子树和右子树的高度处不能超过1
- 每棵子树都符合上述规则
function Node(value) {
this.value = value
this.left = null
this.right = null
}
let a = new Node('a')
let b = new Node('b')
let c = new Node('c')
let d = new Node('d')
let e = new Node('e')
let f = new Node('f')
let g = new Node('g')
let h = new Node('h')
let j = new Node('j')
a.left = b
a.right = c
b.left = d
b.right = e
c.left = f
c.right = g
d.right = h
e.right = j
function getDeep(root) {
if (root == null) return 0
let leftDeep = getDeep(root.left)
let rightDeep = getDeep(root.right)
return Math.max(leftDeep, rightDeep) + 1
}
function isBalance(root) {
if (root == null) return true
let leftDeep = getDeep(root.left)
let rightDeep = getDeep(root.right)
if (Math.abs(leftDeep - rightDeep) > 1) {
return false
} else {
return isBalance(root.left) && isBalance(root.right)
}
}
console.log(getDeep(a))
console.log(isBalance(a))
单旋
某一节点不平衡,如果左边浅,右边深,进行左单旋。
- 旋转节点:不平衡的节点为旋转节点(2)
- 新根:旋转之后称为根节点的节点(5)
- 变化分支:父级节点发生变化的那个分支
- 不变分支:父级节点不变的那个分支
左单旋时:
- 旋转节点:当前不平衡的节点 2
- 新根:右子树的根节点 5
- 变化分支:旋转节点的右子树的左子树 3
- 不变分支:旋转节点的右子树的右子树 6
右单旋时:
- 旋转节点:当前不平衡的节点 6
- 新根:左子树的根节点 3
- 变化分支:旋转节点的左子树的右子树 5
- 不变分支:旋转节点的左子树的左子树 2
步骤:
- 进行左单旋
-
- 找到新根
-
- 找到变化分支
-
- 当前旋转节点的右孩子为变化分支
-
- 新根的左孩子为旋转节点
-
- 返回新的根节点
- 进行右单旋
-
- 找到新根
-
- 找到变化分支
-
- 当前旋转节点的左孩子为变化分支
-
- 新根的右孩子为旋转节点
-
- 返回新的根节点
function Node(value) {
this.value = value
this.left = null
this.right = null
}
let node2 = new Node('2')
let node5 = new Node('5')
let node3 = new Node('3')
let node6 = new Node('6')
node2.right= node5
node5.left = node3
node5.right = node6
function getDeep(root) {
if (root == null) return 0
let leftDeep = getDeep(root.left)
let rightDeep = getDeep(root.right)
return Math.max(leftDeep, rightDeep) + 1
}
function isBalance(root) {
if (root == null) return true
let leftDeep = getDeep(root.left)
let rightDeep = getDeep(root.right)
if (Math.abs(leftDeep - rightDeep) > 1) {
return false
} else {
return isBalance(root.left) && isBalance(root.right)
}
}
function leftRotate (root){
// 找到新根
let newRoot= root.right
// 找到变化分支
let changeBranch = root.right.left
// 当前旋转接点的右节点变为变化分支
root.right = changeBranch
// 新根的左节点变为旋转分支
newRoot.left = root
// 返回新的根节点
return newRoot
}
function rightRotate (root){
let newRoot = root.left
let changeBranch = root.left.right
root.left = changeBranch
newRoot.right = root
return newRoot
}
/**
* 平衡二叉树
* @param root 根节点
* @returns {*|boolean} 平衡后的根节点
*/
function change(root) {
if (isBalance(root)) return root
if (root.left != null) root.left = change(root.left)
if (root.right != null) root.right = change(root.right)
let leftDeep = getDeep(root.left)
let rightDeep = getDeep(root.right)
if (Math.abs(leftDeep - rightDeep < 2)) {
return true
} else if (leftDeep > rightDeep) {
// 左边深 右旋
return rightRotate(root)
} else {
// 右边深 左旋
return leftRotate(root)
}
}
console.log(isBalance(node2))
let newRoot = change(node2)
console.log(isBalance(newRoot))
双旋
有些情况只有一次单选是实现不了的,比如下面的情况:
变化分支(6,7)不可以是唯一的最深分支。
如果变化分支(6,7)是唯一的最深分支,那么需要先进行依次左旋,再进行右旋。也就是需要双旋。
二叉树的双旋(左右双旋,右左双旋)
当要对某个节点进行左单旋时,如果变化分支是唯一的最深分支,那么我们要对新根进行右单旋,然后再进行左单旋,这样的旋转叫做右左双旋
当要对某个节点进行右单旋时,如果变化分支是惟一的最深分支,那么我们要对新根进行左单旋,然后再进行右单旋,这样的旋转叫做左右双旋