【大模型】大模型 CPU 推理之 llama.cpp

news2025/1/16 15:40:44

【大模型】大模型 CPU 推理之 llama.cpp

  • llama.cpp
  • 安装llama.cpp
  • Memory/Disk Requirements
  • Quantization
  • 测试推理
    • 下载模型
    • 测试
  • 参考

llama.cpp

  • 描述

    The main goal of llama.cpp is to enable LLM inference with minimal setup and state-of-the-art performance on a wide variety of hardware - locally and in the cloud.

    • Plain C/C++ implementation without any dependencies
    • Apple silicon is a first-class citizen - optimized via ARM NEON, Accelerate and Metal frameworks
    • AVX, AVX2 and AVX512 support for x86 architectures
    • 1.5-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, and 8-bit integer quantization for faster inference and reduced memory use
    • Custom CUDA kernels for running LLMs on NVIDIA GPUs (support for AMD GPUs via HIP)
    • Vulkan, SYCL, and (partial) OpenCL backend support
    • CPU+GPU hybrid inference to partially accelerate models larger than the total VRAM capacity
  • 官网
    https://github.com/ggerganov/llama.cpp

  • Supported platforms:

     Mac OS
     Linux
     Windows (via CMake)
     Docker
     FreeBSD
    
  • Supported models:

    • Typically finetunes of the base models below are supported as well.

    LLaMA 🦙
    LLaMA 2 🦙🦙
    Mistral 7B
    Mixtral MoE
    Falcon
    Chinese LLaMA / Alpaca and Chinese LLaMA-2 / Alpaca-2
    Vigogne (French)
    Koala
    Baichuan 1 & 2 + derivations
    Aquila 1 & 2
    Starcoder models
    Refact
    Persimmon 8B
    MPT
    Bloom
    Yi models
    StableLM models
    Deepseek models
    Qwen models
    PLaMo-13B
    Phi models
    GPT-2
    Orion 14B
    InternLM2
    CodeShell
    Gemma
    Mamba
    Xverse
    Command-R

    • Multimodal models:

    LLaVA 1.5 models, LLaVA 1.6 models
    BakLLaVA
    Obsidian
    ShareGPT4V
    MobileVLM 1.7B/3B models
    Yi-VL

安装llama.cpp

  • 下载代码
    git clone https://github.com/ggerganov/llama.cpp
    
    
  • Build
    On Linux or MacOS:
    cd llama.cpp
    
    make
    
    其他编译方法参考官网https://github.com/ggerganov/llama.cpp

Memory/Disk Requirements

在这里插入图片描述

Quantization

在这里插入图片描述

测试推理

下载模型

快速下载模型,参考: 无需 VPN 即可急速下载 huggingface 上的 LLM 模型
我这里下 qwen/Qwen1.5-1.8B-Chat-GGUF 进行测试

huggingface-cli download --resume-download  qwen/Qwen1.5-1.8B-Chat-GGUF  --local-dir  qwen/Qwen1.5-1.8B-Chat-GGUF

测试

cd ./llama.cpp

./main -m /your/path/qwen/Qwen1.5-1.8B-Chat-GGUF/qwen1_5-1_8b-chat-q4_k_m.gguf -n 512 --color -i -cml -f ./prompts/chat-with-qwen.txt

需要修改提示语,可以编辑 ./prompts/chat-with-qwen.txt 进行修改。

加载模型输出信息:

llama.cpp# ./main -m /mnt/data/llm/Qwen1.5-1.8B-Chat-GGUF/qwen1_5-1_8b-chat-q4_k_m.gguf -n 512 --color -i -cml -f ./prompts/chat-with-qwen
.txt
Log start
main: build = 2527 (ad3a0505)
main: built with cc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 for x86_64-linux-gnu
main: seed  = 1711760850
llama_model_loader: loaded meta data with 21 key-value pairs and 291 tensors from /mnt/data/llm/Qwen1.5-1.8B-Chat-GGUF/qwen1_5-1_8b-chat-q4_k_m.gguf (version GGUF V3 (latest))
llama_model_loader: Dumping metadata keys/values. Note: KV overrides do not apply in this output.
llama_model_loader: - kv   0:                       general.architecture str              = qwen2
llama_model_loader: - kv   1:                               general.name str              = Qwen1.5-1.8B-Chat-AWQ-fp16
llama_model_loader: - kv   2:                          qwen2.block_count u32              = 24
llama_model_loader: - kv   3:                       qwen2.context_length u32              = 32768
llama_model_loader: - kv   4:                     qwen2.embedding_length u32              = 2048
llama_model_loader: - kv   5:                  qwen2.feed_forward_length u32              = 5504
llama_model_loader: - kv   6:                 qwen2.attention.head_count u32              = 16
llama_model_loader: - kv   7:              qwen2.attention.head_count_kv u32              = 16
llama_model_loader: - kv   8:     qwen2.attention.layer_norm_rms_epsilon f32              = 0.000001
llama_model_loader: - kv   9:                       qwen2.rope.freq_base f32              = 1000000.000000
llama_model_loader: - kv  10:                qwen2.use_parallel_residual bool             = true
llama_model_loader: - kv  11:                       tokenizer.ggml.model str              = gpt2
llama_model_loader: - kv  12:                      tokenizer.ggml.tokens arr[str,151936]  = ["!", "\"", "#", "$", "%", "&", "'", ...
llama_model_loader: - kv  13:                  tokenizer.ggml.token_type arr[i32,151936]  = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
llama_model_loader: - kv  14:                      tokenizer.ggml.merges arr[str,151387]  = ["Ġ Ġ", "ĠĠ ĠĠ", "i n", "Ġ t",...
llama_model_loader: - kv  15:                tokenizer.ggml.eos_token_id u32              = 151645
llama_model_loader: - kv  16:            tokenizer.ggml.padding_token_id u32              = 151643
llama_model_loader: - kv  17:                tokenizer.ggml.bos_token_id u32              = 151643
llama_model_loader: - kv  18:                    tokenizer.chat_template str              = {% for message in messages %}{{'<|im_...
llama_model_loader: - kv  19:               general.quantization_version u32              = 2
llama_model_loader: - kv  20:                          general.file_type u32              = 15
llama_model_loader: - type  f32:  121 tensors
llama_model_loader: - type q5_0:   12 tensors
llama_model_loader: - type q8_0:   12 tensors
llama_model_loader: - type q4_K:  133 tensors
llama_model_loader: - type q6_K:   13 tensors
llm_load_vocab: special tokens definition check successful ( 293/151936 ).
llm_load_print_meta: format           = GGUF V3 (latest)
llm_load_print_meta: arch             = qwen2
llm_load_print_meta: vocab type       = BPE
llm_load_print_meta: n_vocab          = 151936
llm_load_print_meta: n_merges         = 151387
llm_load_print_meta: n_ctx_train      = 32768
llm_load_print_meta: n_embd           = 2048
llm_load_print_meta: n_head           = 16
llm_load_print_meta: n_head_kv        = 16
llm_load_print_meta: n_layer          = 24
llm_load_print_meta: n_rot            = 128
llm_load_print_meta: n_embd_head_k    = 128
llm_load_print_meta: n_embd_head_v    = 128
llm_load_print_meta: n_gqa            = 1
llm_load_print_meta: n_embd_k_gqa     = 2048
llm_load_print_meta: n_embd_v_gqa     = 2048
llm_load_print_meta: f_norm_eps       = 0.0e+00
llm_load_print_meta: f_norm_rms_eps   = 1.0e-06
llm_load_print_meta: f_clamp_kqv      = 0.0e+00
llm_load_print_meta: f_max_alibi_bias = 0.0e+00
llm_load_print_meta: f_logit_scale    = 0.0e+00
llm_load_print_meta: n_ff             = 5504
llm_load_print_meta: n_expert         = 0
llm_load_print_meta: n_expert_used    = 0
llm_load_print_meta: causal attn      = 1
llm_load_print_meta: pooling type     = 0
llm_load_print_meta: rope type        = 2
llm_load_print_meta: rope scaling     = linear
llm_load_print_meta: freq_base_train  = 1000000.0
llm_load_print_meta: freq_scale_train = 1
llm_load_print_meta: n_yarn_orig_ctx  = 32768
llm_load_print_meta: rope_finetuned   = unknown
llm_load_print_meta: ssm_d_conv       = 0
llm_load_print_meta: ssm_d_inner      = 0
llm_load_print_meta: ssm_d_state      = 0
llm_load_print_meta: ssm_dt_rank      = 0
llm_load_print_meta: model type       = 1B
llm_load_print_meta: model ftype      = Q4_K - Medium
llm_load_print_meta: model params     = 1.84 B
llm_load_print_meta: model size       = 1.13 GiB (5.28 BPW)
llm_load_print_meta: general.name     = Qwen1.5-1.8B-Chat-AWQ-fp16
llm_load_print_meta: BOS token        = 151643 '<|endoftext|>'
llm_load_print_meta: EOS token        = 151645 '<|im_end|>'
llm_load_print_meta: PAD token        = 151643 '<|endoftext|>'
llm_load_print_meta: LF token         = 148848 'ÄĬ'
llm_load_tensors: ggml ctx size =    0.11 MiB
llm_load_tensors:        CPU buffer size =  1155.67 MiB
...................................................................
llama_new_context_with_model: n_ctx      = 512
llama_new_context_with_model: n_batch    = 512
llama_new_context_with_model: n_ubatch   = 512
llama_new_context_with_model: freq_base  = 1000000.0
llama_new_context_with_model: freq_scale = 1
llama_kv_cache_init:        CPU KV buffer size =    96.00 MiB
llama_new_context_with_model: KV self size  =   96.00 MiB, K (f16):   48.00 MiB, V (f16):   48.00 MiB
llama_new_context_with_model:        CPU  output buffer size =   296.75 MiB
llama_new_context_with_model:        CPU compute buffer size =   300.75 MiB
llama_new_context_with_model: graph nodes  = 868
llama_new_context_with_model: graph splits = 1

system_info: n_threads = 4 / 4 | AVX = 1 | AVX_VNNI = 1 | AVX2 = 1 | AVX512 = 0 | AVX512_VBMI = 0 | AVX512_VNNI = 0 | FMA = 1 | NEON = 0 | ARM_FMA = 0 | F16C = 1 | FP16_VA = 0 | WASM_SIMD = 0 | BLAS = 0 | SSE3 = 1 | SSSE3 = 1 | VSX = 0 | MATMUL_INT8 = 0 |
main: interactive mode on.
Reverse prompt: '<|im_start|>user
'
sampling:
        repeat_last_n = 64, repeat_penalty = 1.000, frequency_penalty = 0.000, presence_penalty = 0.000
        top_k = 40, tfs_z = 1.000, top_p = 0.950, min_p = 0.050, typical_p = 1.000, temp = 0.800
        mirostat = 0, mirostat_lr = 0.100, mirostat_ent = 5.000
sampling order:
CFG -> Penalties -> top_k -> tfs_z -> typical_p -> top_p -> min_p -> temperature
generate: n_ctx = 512, n_batch = 2048, n_predict = 512, n_keep = 10


== Running in interactive mode. ==
 - Press Ctrl+C to interject at any time.
 - Press Return to return control to LLaMa.
 - To return control without starting a new line, end your input with '/'.
 - If you want to submit another line, end your input with '\'.

system
You are a helpful assistant.
user

>

输入文本:What’s AI?

输出示例:
在这里插入图片描述

参考

  • https://github.com/ggerganov/llama.cpp

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1567390.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

开源模型应用落地-chatglm3-6b模型小试-入门篇(二)

一、前言 刚开始接触AI时&#xff0c;您可能会感到困惑&#xff0c;因为面对众多开源模型的选择&#xff0c;不知道应该选择哪个模型&#xff0c;也不知道如何调用最基本的模型。但是不用担心&#xff0c;我将陪伴您一起逐步入门&#xff0c;解决这些问题。 在信息时代&#xf…

量化交易入门(四十一)ASI指标Python实现和回测

老规矩先上图&#xff0c;看看ASI指标使用苹果数据回测后的结果如何。 一、策略运行结果 执行的结果&#xff1a; Starting Portfolio Value: 100000.00 Final Portfolio Value: 92514.82 Annualized Return: -1.93% Sharpe Ratio: -0.27 Max Drawdown: 25.34% Max Drawdown …

EasyBoss ERP支持TikTok Shop拆单发货功能,多店铺订单包裹拆分一个系统搞定

一些TikTok Shop本土卖家在运营过程中面临这样的困境&#xff1a;当顾客一次性订购多个商品&#xff0c;由于部分商品缺货或包裹超重&#xff0c;订单延迟发货或被物流限制发不出货&#xff0c;导致店铺被投诉。为了解决这一问题&#xff0c;卖家可以采取拆单发货的策略&#x…

C#实现只保存2天的日志文件

文章目录 业务需求代码运行效果 欢迎讨论&#xff01; 业务需求 在生产环境中&#xff0c;控制台窗口不便展示出来。 为了在生产环境中&#xff0c;完整记录控制台应用的输出&#xff0c;选择将其输出到文件中。 但是&#xff0c;存储所有输出的话会占用很多空间&#xff0c;…

Vue项目之路由的高级用法

路由的高级用法 1.路由传参 1.1设置路由&#xff08;在路由中预留参数&#xff09; 组织路由地址的任意位置添加/:参数名&#xff0c;说明要访问这个路径就必须提供这个参数 此例中要想访问资格组件则必须提供对应的3个参数 /参数1/goods/参数2/参数3 注&#xff1a;在路由地…

信息系统项目管理师——第18章项目绩效域管理(一)

本章节内容属于第四版新增知识&#xff0c;为PMBOK第七版专有&#xff0c;选择、案例、论文都会考&#xff0c;属于比较重要的章节。 选择题&#xff0c;稳定考3分左右&#xff0c;新教材基本考课本原话&#xff0c;需要多读课本&#xff0c;多刷题。 案例题&#xff0c;考的概…

【前端Vue】社交信息头条项目完整笔记第3篇:三、个人中心,TabBar 处理【附代码文档】

社交媒体-信息头条项目完整开发笔记完整教程&#xff08;附代码资料&#xff09;主要内容讲述&#xff1a;一、项目初始化使用 Vue CLI 创建项目,加入 Git 版本管理,调整初始目录结构,导入图标素材,引入 Vant 组件库,移动端 REM 适配。二、登录注册准备,实现基本登录功能,登录状…

unity 使用Base64编码工具对xml json 或者其他文本进行加密 解密

Base64编码加密解密工具 这是一个加密解密的网页工具&#xff0c;别人可以把他加密后的字符串给你&#xff0c;然后你可以用代码解密出来&#xff0c; 或者自己对内容进行加密&#xff0c;解密处理。 /// <summary>/// Base64 解码/// </summary>string DecodeBase…

销售与营销的区别:从手中到心中

一、引言 在商界&#xff0c;销售和营销常常被视为同义词&#xff0c;但实际上它们各自扮演着不同的角色。简而言之&#xff0c;销售是将产品送到客户手里&#xff0c;而营销则是将产品送到客户心里。这种微妙的差异对于企业的成功至关重要。正如彼得德鲁克所说&#xff1a;“…

处理SAP报错:消息GLT2076 没有项目种类分配到科目 1481010102/1000

财务新建了个科目入账时报错&#xff1a;没有项目种类分配到科目。 查了下原因。原来是我们公司实施时启用了凭证分割功能。其中有个配置是这样的&#xff1a;给总账科目分类&#xff1a;IMG-财务会计&#xff08;新&#xff09;-总账会计核算-业务交易-凭证分解-为文档拆分给总…

【Java多线程(4)】案例:设计模式

目录 一、什么是设计模式&#xff1f; 二、单例模式 1. 饿汉模式 2. 懒汉模式 懒汉模式-第一次改进 懒汉模式-第二次改进 懒汉模式-第三次改进 一、什么是设计模式&#xff1f; 设计模式是针对软件设计中常见问题的通用解决方案。它们提供了一种被广泛接受的方法来解决…

usbserial驱动流程解析_Part1_主要函数

本系列解析usbseiral ko的源码&#xff0c;记录主要函数&#xff0c;调用流程&#xff0c;USB一端和串口一端的注册流程&#xff0c;本节简介主要函数以及替换规则。 首先&#xff0c;usbserial是USB转串口驱动的一个基础模板&#xff0c;其中有许多默认函数&#xff0c;他们的…

企业管理新思考:利润率与质量在创业路上的重要性

一、引言 在当下这个充满变革与挑战的商业环境中&#xff0c;创业者和企业家们时常面临着规模扩张与利润增长之间的权衡。著名天使投资人吴世春先生的一席话&#xff0c;为我们指明了方向&#xff1a;“做企业利润率优先于规模&#xff0c;质量优先于数量。”这一深刻见解&…

Apache DolphinScheduler 【安装部署】

前言 今天来学习一下 DolphinScheduler &#xff0c;这是一个任务调度工具&#xff0c;现在用的比较火爆。 1、安装部署 1.0、准备工作 1.0.1、集群规划 dolphinscheduler 比较吃内存&#xff0c;所以尽量给 master 节点多分配一点内存&#xff0c;桌面和虚拟机里能关的应用…

Qt C++ | Qt 元对象系统、信号和槽及事件(第一集)

01 元对象系统 一、元对象系统基本概念 1、Qt 的元对象系统提供的功能有:对象间通信的信号和槽机制、运行时类型信息和动态属性系统等。 2、元对象系统是 Qt 对原有的 C++进行的一些扩展,主要是为实现信号和槽机制而引入的, 信号和槽机制是 Qt 的核心特征。 3、要使用元…

JRT简化开发环境

JRT是完全前后端分离的项目&#xff0c;实际工程是逻辑上完全前后端分离&#xff0c;代码层级和工程是不离的。这样就可以做到一键启动&#xff0c;同时又有分离的好处。开始页面后缀都沿用aspx&#xff0c;最开始考虑过修改后缀为html&#xff0c;当时觉得搞aspx也不错&#x…

深度学习模型--生成对抗网络(GAN)

AI大模型学习 方向一&#xff1a;AI大模型学习的理论基础 提示&#xff1a;探讨AI大模型学习的数学基础、算法原理以及模型架构设计等。可以深入分析各种经典的深度学习模型&#xff0c;如卷积神经网络&#xff08;CNN&#xff09;、循环神经网络&#xff08;RNN&#xff09;以…

Unity | Shader基础知识(第十一集:什么是Normal Map法线贴图)

目录 前言 一、图片是否有法线贴图的视觉区别 二、有视觉区别的原因 三、法线贴图的作用 四、信息是如何存进去的 五、自己写一个Shader用到法线贴图 六、注意事项 七、作者的话 前言 本小节会给大家解释&#xff0c;什么是法线贴图&#xff1f;为什么法线贴图会产生深…

从神经元到深度学习:探索多层感知机与卷积神经网络的奥秘

深度学习&#xff1a;探索未来的钥匙 在当今技术飞速发展的时代&#xff0c;深度学习已成为科技界的一颗璀璨明珠&#xff0c;它不仅推动了人工智能的边界扩展&#xff0c;还在诸多领域中展现出了巨大的应用潜力。从自动驾驶汽车、语音识别到医疗诊断&#xff0c;深度学习正在…

【C++练级之路】【Lv.18】哈希表(哈希映射,光速查找的魔法)

快乐的流畅&#xff1a;个人主页 个人专栏&#xff1a;《算法神殿》《数据结构世界》《进击的C》 远方有一堆篝火&#xff0c;在为久候之人燃烧&#xff01; 文章目录 引言一、哈希1.1 哈希概念1.2 哈希函数1.3 哈希冲突 二、闭散列2.1 数据类型2.2 成员变量2.3 默认成员函数2.…