大创项目推荐 深度学习 python opencv 火焰检测识别 火灾检测

news2024/11/19 4:47:07

文章目录

  • 0 前言
  • 1 基于YOLO的火焰检测与识别
  • 2 课题背景
  • 3 卷积神经网络
    • 3.1 卷积层
    • 3.2 池化层
    • 3.3 激活函数:
    • 3.4 全连接层
    • 3.5 使用tensorflow中keras模块实现卷积神经网络
  • 4 YOLOV5
    • 4.1 网络架构图
    • 4.2 输入端
    • 4.3 基准网络
    • 4.4 Neck网络
    • 4.5 Head输出层
  • 5 数据集准备
    • 5.1 数据标注简介
    • 5.2 数据保存
  • 6 模型训练
    • 6.1 修改数据配置文件
    • 6.2 修改模型配置文件
    • 6.3 开始训练模型
  • 7 实现效果
    • 7.1图片效果
    • 7.2 视频效果
    • 7.3 摄像头实时效果
  • 8 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

🚩 基于深度学习的火焰识别算法研究与实现

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🥇学长这里给一个题目综合评分(每项满分5分)

  • 难度系数:4分
  • 工作量:4分
  • 创新点:3分

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate


1 基于YOLO的火焰检测与识别

学长设计系统实现效果如下,精度不错!

在这里插入图片描述

在这里插入图片描述

2 课题背景

火灾事故的频发给社会造成不必要的财富损失以及人员伤亡,在当今这个社会消防也是收到越来越多的注视。火灾在发生初期是很容易控制的,因此,如何在对可能发生灾害的场所进行有效监控,使得潜在的损失危害降到最低是当前研究的重点内容。传统的探测器有较大的局限性,感温、感烟的探测器的探测灵敏度相对争分夺秒的灾情控制来说有着时间上的不足,而且户外场所的适用性大大降低。随着计算机视觉的发展,基于深度学习的图像处理技术已经愈发成熟并且广泛应用在当今社会的许多方面,其在人脸识别、安防、医疗、军事等领域已经有相当一段时间的实际应用,在其他领域也展现出跟广阔的前景。利用深度学习图像处理技术对火灾场景下火焰的特征学习、训练神经网络模型自动识别火焰,这项技术可以对具有监控摄像头场景下的火灾火焰进行自动、快速、准确识别并设置预警装置,从而在火灾发生的初期及时响应,赢得更多的时间,把损失降到最低。

3 卷积神经网络

受到人类大脑神经突触结构相互连接的模式启发,神经网络作为人工智能领域的重要组成部分,通过分布式的方法处理信息,可以解决复杂的非线性问题,从构造方面来看,主要包括输入层、隐藏层、输出层三大组成结构。每一个节点被称为一个神经元,存在着对应的权重参数,部分神经元存在偏置,当输入数据x进入后,对于经过的神经元都会进行类似于:y=w*x+b的线性函数的计算,其中w为该位置神经元的权值,b则为偏置函数。通过每一层神经元的逻辑运算,将结果输入至最后一层的激活函数,最后得到输出output。

在这里插入图片描述

3.1 卷积层

卷积核相当于一个滑动窗口,示意图中3x3大小的卷积核依次划过6x6大小的输入数据中的对应区域,并与卷积核滑过区域做矩阵点乘,将所得结果依次填入对应位置即可得到右侧4x4尺寸的卷积特征图,例如划到右上角3x3所圈区域时,将进行0x0+1x1+2x1+1x1+0x0+1x1+1x0+2x0x1x1=6的计算操作,并将得到的数值填充到卷积特征的右上角。

在这里插入图片描述

3.2 池化层

池化操作又称为降采样,提取网络主要特征可以在达到空间不变性的效果同时,有效地减少网络参数,因而简化网络计算复杂度,防止过拟合现象的出现。在实际操作中经常使用最大池化或平均池化两种方式,如下图所示。虽然池化操作可以有效的降低参数数量,但过度池化也会导致一些图片细节的丢失,因此在搭建网络时要根据实际情况来调整池化操作。

在这里插入图片描述

3.3 激活函数:

激活函数大致分为两种,在卷积神经网络的发展前期,使用较为传统的饱和激活函数,主要包括sigmoid函数、tanh函数等;随着神经网络的发展,研宄者们发现了饱和激活函数的弱点,并针对其存在的潜在问题,研宄了非饱和激活函数,其主要含有ReLU函数及其函数变体

3.4 全连接层

在整个网络结构中起到“分类器”的作用,经过前面卷积层、池化层、激活函数层之后,网络己经对输入图片的原始数据进行特征提取,并将其映射到隐藏特征空间,全连接层将负责将学习到的特征从隐藏特征空间映射到样本标记空间,一般包括提取到的特征在图片上的位置信息以及特征所属类别概率等。将隐藏特征空间的信息具象化,也是图像处理当中的重要一环。

3.5 使用tensorflow中keras模块实现卷积神经网络

class CNN(tf.keras.Model):
    def __init__(self):
        super().__init__()
        self.conv1 = tf.keras.layers.Conv2D(
            filters=32,             # 卷积层神经元(卷积核)数目
            kernel_size=[5, 5],     # 感受野大小
            padding='same',         # padding策略(vaild 或 same)
            activation=tf.nn.relu   # 激活函数
        )
        self.pool1 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.conv2 = tf.keras.layers.Conv2D(
            filters=64,
            kernel_size=[5, 5],
            padding='same',
            activation=tf.nn.relu
        )
        self.pool2 = tf.keras.layers.MaxPool2D(pool_size=[2, 2], strides=2)
        self.flatten = tf.keras.layers.Reshape(target_shape=(7 * 7 * 64,))
        self.dense1 = tf.keras.layers.Dense(units=1024, activation=tf.nn.relu)
        self.dense2 = tf.keras.layers.Dense(units=10)

    def call(self, inputs):
        x = self.conv1(inputs)                  # [batch_size, 28, 28, 32]
        x = self.pool1(x)                       # [batch_size, 14, 14, 32]
        x = self.conv2(x)                       # [batch_size, 14, 14, 64]
        x = self.pool2(x)                       # [batch_size, 7, 7, 64]
        x = self.flatten(x)                     # [batch_size, 7 * 7 * 64]
        x = self.dense1(x)                      # [batch_size, 1024]
        x = self.dense2(x)                      # [batch_size, 10]
        output = tf.nn.softmax(x)
        return output

4 YOLOV5

我们选择当下YOLO最新的卷积神经网络YOLOv5来进行火焰识别检测。6月9日,Ultralytics公司开源了YOLOv5,离上一次YOLOv4发布不到50天。而且这一次的YOLOv5是完全基于PyTorch实现的!在我们还对YOLOv4的各种高端操作、丰富的实验对比惊叹不已时,YOLOv5又带来了更强实时目标检测技术。按照官方给出的数目,现版本的YOLOv5每个图像的推理时间最快0.007秒,即每秒140帧(FPS),但YOLOv5的权重文件大小只有YOLOv4的1/9。

目标检测架构分为两种,一种是two-stage,一种是one-stage,区别就在于 two-stage 有region
proposal过程,类似于一种海选过程,网络会根据候选区域生成位置和类别,而one-stage直接从图片生成位置和类别。今天提到的 YOLO就是一种
one-stage方法。YOLO是You Only Look Once的缩写,意思是神经网络只需要看一次图片,就能输出结果。YOLO
一共发布了五个版本,其中 YOLOv1 奠定了整个系列的基础,后面的系列就是在第一版基础上的改进,为的是提升性能。

YOLOv5有4个版本性能如图所示:

在这里插入图片描述

4.1 网络架构图

在这里插入图片描述

YOLOv5是一种单阶段目标检测算法,该算法在YOLOv4的基础上添加了一些新的改进思路,使其速度与精度都得到了极大的性能提升。主要的改进思路如下所示:

4.2 输入端

在模型训练阶段,提出了一些改进思路,主要包括Mosaic数据增强、自适应锚框计算、自适应图片缩放;

  • Mosaic数据增强:Mosaic数据增强的作者也是来自YOLOv5团队的成员,通过随机缩放、随机裁剪、随机排布的方式进行拼接,对小目标的检测效果很不错

在这里插入图片描述

4.3 基准网络

融合其它检测算法中的一些新思路,主要包括:Focus结构与CSP结构;

4.4 Neck网络

在目标检测领域,为了更好的提取融合特征,通常在Backbone和输出层,会插入一些层,这个部分称为Neck。Yolov5中添加了FPN+PAN结构,相当于目标检测网络的颈部,也是非常关键的。

在这里插入图片描述

在这里插入图片描述

FPN+PAN的结构

在这里插入图片描述

这样结合操作,FPN层自顶向下传达强语义特征(High-Level特征),而特征金字塔则自底向上传达强定位特征(Low-
Level特征),两两联手,从不同的主干层对不同的检测层进行特征聚合。

FPN+PAN借鉴的是18年CVPR的PANet,当时主要应用于图像分割领域,但Alexey将其拆分应用到Yolov4中,进一步提高特征提取的能力。

4.5 Head输出层

输出层的锚框机制与YOLOv4相同,主要改进的是训练时的损失函数GIOU_Loss,以及预测框筛选的DIOU_nms。

对于Head部分,可以看到三个紫色箭头处的特征图是40×40、20×20、10×10。以及最后Prediction中用于预测的3个特征图:

==>40×40×255==>20×20×255==>10×10×255

在这里插入图片描述

  • 相关代码

    class Detect(nn.Module):
      stride = None  # strides computed during build
      onnx_dynamic = False  # ONNX export parameter
        
      def __init__(self, nc=80, anchors=(), ch=(), inplace=True):  # detection layer
          super().__init__()
          self.nc = nc  # number of classes
          self.no = nc + 5  # number of outputs per anchor
          self.nl = len(anchors)  # number of detection layers
          self.na = len(anchors[0]) // 2  # number of anchors
          self.grid = [torch.zeros(1)] * self.nl  # init grid
          self.anchor_grid = [torch.zeros(1)] * self.nl  # init anchor grid
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # shape(nl,na,2)
          self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  # output conv
          self.inplace = inplace  # use in-place ops (e.g. slice assignment)
        
      def forward(self, x):
          z = []  # inference output
          for i in range(self.nl):
            x[i] = self.m[i](x[i])  # conv
              bs, _, ny, nx = x[i].shape  # x(bs,255,20,20) to x(bs,3,20,20,85)
              x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
        
    
              if not self.training:  # inference
                  if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                      self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)
        
                  y = x[i].sigmoid()
                  if self.inplace:
                      y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                      y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                  else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  # xy
                      wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  # wh
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                  z.append(y.view(bs, -1, self.no))
        
          return x if self.training else (torch.cat(z, 1), x)
    
      def _make_grid(self, nx=20, ny=20, i=0):
          d = self.anchors[i].device
          if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
              yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)], indexing='ij')
          else:
              yv, xv = torch.meshgrid([torch.arange(ny).to(d), torch.arange(nx).to(d)])
          grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
          anchor_grid = (self.anchors[i].clone() * self.stride[i]) \
              .view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
          return grid, anchor_grid
    

5 数据集准备

由于目前针对多源场景下的火焰数据并没有现成的数据集,我们使用使用Python爬虫利用关键字在互联网上获得的图片数据,爬取数据包含室内场景下的火焰、写字楼和房屋燃烧、森林火灾和车辆燃烧等场景下的火焰图片。经过筛选后留下3000张质量较好的图片制作成VOC格式的实验数据集。

深度学习图像标注软件众多,按照不同分类标准有多中类型,本文使用LabelImg单机标注软件进行标注。LabelImg是基于角点的标注方式产生边界框,对图片进行标注得到xml格式的标注文件,由于边界框对检测精度的影响较大因此采用手动标注,并没有使用自动标注软件。

考虑到有的朋友时间不足,博主提供了标注好的数据集和训练好的模型,需要请联系。

5.1 数据标注简介

通过pip指令即可安装

pip install labelimg

在命令行中输入labelimg即可打开

在这里插入图片描述

打开你所需要进行标注的文件夹,点击红色框区域进行标注格式切换,我们需要yolo格式,因此切换到yolo

在这里插入图片描述

点击Create RectBo -> 拖拽鼠标框选目标 -> 给上标签 -> 点击ok

在这里插入图片描述

5.2 数据保存

点击save,保存txt。

在这里插入图片描述

打开具体的标注文件,你将会看到下面的内容,txt文件中每一行表示一个目标,以空格进行区分,分别表示目标的类别id,归一化处理之后的中心点x坐标、y坐标、目标框的w和h。

在这里插入图片描述

6 模型训练

预训练模型和数据集都准备好了,就可以开始训练自己的yolov5目标检测模型了,训练目标检测模型需要修改两个yaml文件中的参数。一个是data目录下的相应的yaml文件,一个是model目录文件下的相应的yaml文件。

6.1 修改数据配置文件

修改data目录下的相应的yaml文件。找到目录下的voc.yaml文件,将该文件复制一份,将复制的文件重命名,最好和项目相关,这样方便后面操作。我这里修改为fire.yaml。

在这里插入图片描述

打开这个文件夹修改其中的参数,需要检测的类别数,我这里是识别有无火焰,所以这里填写2;最后箭头4中填写需要识别的类别的名字(必须是英文,否则会乱码识别不出来)。到这里和data目录下的yaml文件就修改好了。

在这里插入图片描述

6.2 修改模型配置文件

由于该项目使用的是yolov5s.pt这个预训练权重,所以要使用models目录下的yolov5s.yaml文件中的相应参数(因为不同的预训练权重对应着不同的网络层数,所以用错预训练权重会报错)。同上修改data目录下的yaml文件一样,我们最好将yolov5s.yaml文件复制一份,然后将其重命名

打开yolov5s.yaml文件,主要是进去后修改nc这个参数来进行类别的修改,修改如图中的数字就好了,这里是识别两个类别。

在这里插入图片描述

至此,相应的配置参数就修改好了。

目前支持的模型种类如下所示:

在这里插入图片描述

6.3 开始训练模型

如果上面的数据集和两个yaml文件的参数都修改好了的话,就可以开始yolov5的训练了。首先我们找到train.py这个py文件。

然后找到主函数的入口,这里面有模型的主要参数。修改train.py中的weights、cfg、data、epochs、batch_size、imgsz、device、workers等参数

在这里插入图片描述

至此,就可以运行train.py函数训练自己的模型了。

训练代码成功执行之后会在命令行中输出下列信息,接下来就是安心等待模型训练结束即可。

7 实现效果

我们实现了图片检测,视频检测和摄像头实时检测接口,用Pyqt自制了简单UI



    #部分代码
    from PyQt5 import QtCore, QtGui, QtWidgets


    class Ui_Win_mask(object):
        def setupUi(self, Win_mask):
            Win_mask.setObjectName("Win_mask")
            Win_mask.resize(1107, 868)
            Win_mask.setStyleSheet("QString qstrStylesheet = \"background-color:rgb(43, 43, 255)\";\n"
    "ui.pushButton->setStyleSheet(qstrStylesheet);")
            self.frame = QtWidgets.QFrame(Win_mask)
            self.frame.setGeometry(QtCore.QRect(10, 140, 201, 701))
            self.frame.setFrameShape(QtWidgets.QFrame.StyledPanel)
            self.frame.setFrameShadow(QtWidgets.QFrame.Raised)
            self.frame.setObjectName("frame")
            self.pushButton = QtWidgets.QPushButton(self.frame)
            self.pushButton.setGeometry(QtCore.QRect(10, 40, 161, 51))
            font = QtGui.QFont()
            font.setBold(True)
            font.setUnderline(True)
            font.setWeight(75)
            self.pushButton.setFont(font)
            self.pushButton.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")
            self.pushButton.setObjectName("pushButton")
            self.pushButton_2 = QtWidgets.QPushButton(self.frame)
            self.pushButton_2.setGeometry(QtCore.QRect(10, 280, 161, 51))
            font = QtGui.QFont()
            font.setBold(True)
            font.setUnderline(True)
            font.setWeight(75)
            self.pushButton_2.setFont(font)
            self.pushButton_2.setStyleSheet("QPushButton{background-color:rgb(151, 191, 255);}")
            self.pushButton_2.setObjectName("pushButton_2")
            self.pushButton_3 = QtWidgets.QPushButton(self.frame)
            self.pushButton_3.setGeometry(QtCore.QRect(10, 500, 161, 51))
            QtCore.QMetaObject.connectSlotsByName(Win_mask)



7.1图片效果

在这里插入图片描述

7.2 视频效果

在这里插入图片描述

7.3 摄像头实时效果

在这里插入图片描述

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1567274.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux:ip和ip协议的初步认识

文章目录 ip协议基本认识ip协议的报头网段划分ip的类型划分 ip协议基本认识 前面对于TCP的内容已经基本结束了,那么这也就意味着在传输层也已经结束了,那么下一步要进入的是的是网络层,网络层中也有很多种协议,这里主要进行解析的…

uniapp微信小程序真机图片不显示

不同设备可能出现部分设备显示不了图片,解决办法:图片地址直接使用,不要拼接: https://images.weserv.nl/?urlhttp

Leetcode442. 数组中重复的数据

Every day a Leetcode 题目来源:442. 数组中重复的数据 解法1:将元素交换到对应的位置 由于给定的 n 个数都在 [1,n] 的范围内,如果有数字出现了两次,就意味着 [1,n] 中有数字没有出现过。 因此,我们可以尝试将每一…

【fastadmin】脚本模式下,日志钩子函数执行出现死循环,导致内存溢出奔溃

问题出现原因是想对项目中error级别的日志,接入钉钉告警,方便查看 于是使用钩子方法,日志写入完成后,自动调用自定义的告警方法中 1、在application/tags.php 中添加log_write_done > [app\\common\\behavior\\Common, ],2、在…

JavaAgent 技术原理及实战

JavaAgent 技术原理及实战 1、引子2、JavaAgent 简单示例:方法开始和结束时打印日志2.1 创建 Agent2.2 编写验证 agent 功能的测试类2.2.1 使用JavaAgent 静态加载方式2.2.2 使用 JavaAgent 动态加载方式 2.3、小结 3、JavaAgent3.1 JavaAgent是什么?3.2…

搞学术研究好用免费的学术版ChatGPT网站-学术AI

https://chat.uaskgpt.com/mobile/?user_sn88&channelcsdn&sceneloginhttps://chat.uaskgpt.com/mobile/?user_sn88&channelcsdn&scenelogin 推荐一个非常适合中国本科硕士博士等学生老师使用的学术版ChatGPT, 对接了超大型学术模型&#xff0c…

考研数学|《1800题》基础练习基本不会,怎么办?

这其实是因为,知识点之间没有形成联结 这样只要题目难度提升,一个题目的知识点综合度变高,就不知道该怎么做了。 不要害怕,其实考研复习早起阶段,大家基本上都经过这个阶段,不过有的同学能够快速找到做题…

Vue ElementPlus Input 输入框

Input 输入框 通过鼠标或键盘输入字符 input 为受控组件,它总会显示 Vue 绑定值。 通常情况下,应当处理 input 事件,并更新组件的绑定值(或使用v-model)。否则,输入框内显示的值将不会改变,不支…

[C#]winform使用OpenCvSharp实现透视变换功能支持自定义选位置和删除位置

【透视变换基本原理】 OpenCvSharp 是一个.NET环境下对OpenCV原生库的封装,它提供了大量的计算机视觉和图像处理的功能。要使用OpenCvSharp实现透视变换(Perspective Transformation),你首先需要理解透视变换的原理和它在图像处理…

WPF中动画教程(DoubleAnimation的基本使用)

实现效果 今天以一个交互式小球的例子跟大家分享一下wpf动画中DoubleAnimation的基本使用。该小球会移动到我们鼠标左键或右键点击的地方。 该示例的实现效果如下所示&#xff1a; 页面设计 xaml如下所示&#xff1a; <Window x:Class"AnimationDemo.MainWindow&qu…

mysql 正则表达式查询

学习了mysql 连接查询和子查询和myql join连接&#xff0c;接下来学习下正则表达式查询。正则表达式的规则都是相似的。 8&#xff0c;使用正则表达式查询 正则表达式通常被用来检索或替换那些符合某个模式的文本内容,根据指定的匹配模式匹配文本中符合要求的特殊字符串。例如从…

Android 高德地图

1.获取Key 进入高德开放平台控制台&#xff0c;创建一个新应用。在创建的应用上点击"添加key"按钮&#xff0c;在弹出的对话框中&#xff0c;依次输入key名称&#xff0c;选择服务平台为“Android平台”&#xff0c;输入发布版安全码 SHA1、以及 Package。 获取 S…

flutter获取手机中的系统路径信息

https://www.bilibili.com/video/BV1wE421g7sw获取系统中的路径 获取系统中的路径&#xff0c;并在这个路径中创建一个文本文件【str.txt】 然后进行写入【str.txt】 再读取这个文件【str.txt】 手机没有开通root权限无法看到写入到【应用程序文档目录】路径中的文件 用来…

案例分析-程序的机器级表示

案例一&#xff1a;关于编译优化 请自写一段if- else简单分支程序&#xff0c;分别尝试对它进行不带优化、-O1优化和-O2优化&#xff0c;比较它们的机器级表达&#xff0c;并讨论优劣。 图一为不带优化、图二为O1优化、图三为O2优化、图四为原始C代码。 &#xff08;1&#xff…

x-cmd-pkg | broot 是基于 Rust 开发的一个终端文件管理器

简介 broot 是基于 Rust 开发的一个终端文件管理器&#xff0c;它设计用于帮助用户在终端中更轻松地管理文件和目录&#xff0c;使用树状视图探索文件层次结构、操作文件、启动操作以及定义您自己的快捷方式。 同时它还集成了 ls, tree, find, grep, du, fzf 等工具的常用功能…

IDEA连接SqlServer数据库

目录 下载jar包 下载sqljdbc_12.6压缩包 解压 导入IDEA 新建文件夹 复制粘贴进JDBC文件夹并设为library 编写类及方法 代码 下载jar包 以sqljdbc_12.6为例 下载sqljdbc_12.6压缩包 最新地址&#xff1a;sqljdbc 官方最新地址 解压 解压即用 导入IDEA 新建文件夹 复制…

标题:探索AI绘画:使用深度学习生成艺术

正文&#xff1a; 随着计算机技术的发展&#xff0c;人工智能在各个领域取得了显著的成果。通过训练深度学习模型&#xff0c;AI可以学习大量的艺术作品&#xff0c;从而生成具有独特风格和创意的新作品。 本文将介绍如何使用Python和TensorFlow实现一个简单的AI绘画程序。 二、…

【国信华源2024年首场春季校园招聘面试会举办】

阳春三月&#xff0c;春意盎然&#xff0c;北京国信华源科技有限公司2024年校园招聘活动如期展开。4月2日&#xff0c;成功举办了“国信华源2024年首场春季校园招聘面试会”。 国信华源公司人力资源部热情接待了前来参加面试的同学们&#xff0c;并亲自陪同他们深入探访了企业。…

Docker 哲学 - compose.yaml 指令

compose.yaml 的 image commond working_dir 和 dockerfile的 from cmd workdir 区别在哪里 。为什么 dockerfile制定过了。compose还要再写一个。是处于个性化还是 有不同的意义 如果 dockerfile 的 from 是 node:16 &#xff0c;compose.yaml 的 images 是 node:18 那么 直接…

使用 Docker 部署 Photopea 在线 PS 工具

1&#xff09;Photopea 介绍 GitHub&#xff1a;https://github.com/photopea/photopea 官方手册&#xff1a;https://www.photopea.com/learn/ Adobe 出品的「PhotoShop」想必大家都很熟悉啦&#xff0c;但是「PhotoShop」现在对电脑配置要求越来越高&#xff0c;体积越来越大…