基于FPGA实现的自适应三速以太网

news2025/1/4 21:35:39

一、三速以太网

千兆以太网PHY芯片是适配百兆和十兆的,十兆就不管了,我们的设计只适应千兆和百兆。
在这里插入图片描述
根据上图,我们是可以获取当前主机网口的速率信息的。

always@(posedge w_rxc_bufr)
begin
    if(w_rec_valid == 'd0) begin
        ro_speed <= w_rec_data[2:1];
        ro_link  <= w_rec_data[0];
    end else begin
        ro_speed <= ro_speed;
        ro_link  <= ro_link ;
    end
end

千兆网的设计我们前面的章节介绍的很详细了,至于百兆,主要区别就在于时钟速率从125Mhz变为了25Mhz,双沿采样变为单沿采样,所以我们只需要在ODDR和IDDR使用的时候注意单沿问题即可。
对于接收数据而言,上下沿采样到的数据是一样的,也就是说一次收到的数据高四位和低四位一样,完整的8bit数据需要前一拍数据后一拍数据拼接

always@(posedge w_rxc_bufr)
begin
    if(i_speed1000)
        ro_rec_data <= w_rec_data;
    else 
        ro_rec_data <= {w_rec_data[3:0],ro_rec_data[7:4]};
end

对于发送数据而言,r_tx_cnt_10_100信号是1bit的,不断在01变化,相当于一个时钟指示信号,通过这样的方式实现单沿传输,一个时钟只传输4bit,在下一个时钟再去传输延迟一拍数据的高4bit,这是因为用户进来的数据是8bit的。

genvar txd_i;
generate for(txd_i = 0 ;txd_i < 4 ; txd_i = txd_i + 1)
begin
    assign w_send_d1[txd_i] = i_speed1000 ? i_send_data[txd_i]     :  
                              r_tx_cnt_10_100 == 0 ? i_send_data[txd_i] : ri_send_data[txd_i + 4];

    assign w_send_d2[txd_i] = i_speed1000 ? i_send_data[txd_i + 4] : 
                              r_tx_cnt_10_100 == 0 ? i_send_data[txd_i] : ri_send_data[txd_i + 4];

    ODDR #(
        .DDR_CLK_EDGE    ("OPPOSITE_EDGE"       ),
        .INIT            (1'b0                  ),
        .SRTYPE          ("SYNC"                ) 
    ) 
    ODDR_u 
    (
        .Q               (o_txd[txd_i]          ),  
        .C               (w_txc                 ),
        .CE              (1                     ),
        .D1              (w_send_d1[txd_i]      ),    
        .D2              (w_send_d2[txd_i]      ),    
        .R               (0                     ),
        .S               (0                     ) 
    );
end
endgenerate

二、上板效果

网口速率在这里更改
在这里插入图片描述
wireshark抓包和网络调试助手回环检测,一切正常

在这里插入图片描述
VIVADO上板通过ILA抓包:数据与发送数据一致
注:JTAG进行抓信号时,ILA频率要大于JTAG频率2.5倍,对于千兆而言不用管,但是抓百兆数据信号时,要调整一下JTAG的时钟频率!!

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1544975.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【r-tree算法】一篇文章讲透~

目录 一、引言 二、R-tree算法的基本原理 1 数据结构 2 插入操作 3 删除操作 4 查询操作 5 代码事例 三、R-tree算法的性能分析 1 时间复杂度 2 空间复杂度 3 影响因素 四、R-tree算法的变体和改进 1 R*-tree算法 2 X-tree算法 3 QR-tree算法 五、R-tree算法的…

【物联网】Qinghub Kafka 数据采集

基础信息 组件名称 &#xff1a; kafka-connector 组件版本&#xff1a; 1.0.0 组件类型&#xff1a; 系统默认 状 态&#xff1a; 正式发布 组件描述&#xff1a;通用kafka连接网关&#xff0c;消费来自kafka的数据&#xff0c;并转发给下一个节点做相关的数据解析。 配置文…

http模块 获取http请求报文中的路径 与 查询字符串

虽然request.url已包含属性和查询字符串&#xff0c;但使用不便&#xff0c;若只需其中一个不好提取&#xff0c;于是用到了如下路径和字符串的单独查询方法&#xff1a; 一、获取路径 例如&#xff1a;我在启动谷歌端口时输入http://127.0.0.1:9000 后接了 "/search?k…

Docker 搭建Redis集群

目录 1. 3主3从架构说明 2. 3主3从Redis集群配置 2.1关闭防火墙启动docker后台服务 2.2 新建6个docker容器实例 2.3 进去任意一台redis容器&#xff0c;为6台机器构建集群关系 2.4 进去6381&#xff0c;查看集群状态 3. 主从容错切换迁移 3.1 数据读写存储 3.1.1 查看…

27---eMMC电路设计

视频链接 eMMC电路设计01_哔哩哔哩_bilibili eMMC电路设计 1、eMMC简介 eMMC叫嵌入式多媒体卡&#xff0c;英文全称为Embedded Multi Media Card。是一种闪存卡&#xff08;Flash Memory Card&#xff09;标准&#xff0c;它定义了MMC的架构以及访问Flash Memory的接口和协…

Linux 搭建jenkins docker

jekin docker gitee docker 安装 jenkins docker run -d --restartalways \ --name jenkins -uroot -p 10340:8080 \ -p 10341:50000 \ -v /home/docker/jenkins:/var/jenkins_home \ -v /var/run/docker.sock:/var/run/docker.sock \ -v /usr/bin/docker:/usr/bin/docker je…

【双指针】Leetcode 盛最多水的容器

题目解析 11. 盛水最多的容器 木桶效应&#xff0c;寻找一个区间使得这个区间的体积最大 算法讲解 1. 暴力枚举 遍历这个容器&#xff0c;将每一个区间的体积求出来&#xff0c;然后找出最大的 class Solution { public:int maxArea(vector<int>& height){int n…

SQLite数据库文件损坏的可能几种情况(一)

返回&#xff1a;SQLite—系列文章目录 上一篇&#xff1a;SQLiteC/C接口详细介绍sqlite3_stmt类&#xff08;十三&#xff09; 下一篇&#xff1a;SQLite使用的临时文件&#xff08;二&#xff09; 概述 SQLite数据库具有很强的抗损坏能力。如果应用程序崩溃&#xff0c…

如何在内网访问其他电脑?

网络的发展使得人与人之间的通信变得更加便捷&#xff0c;而在公司或者家庭中&#xff0c;也经常遇到需要内网访问其他电脑的需求。内网访问其他电脑可以实现在局域网内部进行数据共享、文件传输、远程控制等操作&#xff0c;提高工作效率和便利性。本文将介绍内网访问其他电脑…

labelImg | windows anaconda安装labelImg

labelImg 是图片标注软件&#xff0c;用于数据集的制作、标注等等。 下面介绍 labelImg 的安装过程。 用的是 anaconda&#xff0c;所以以 anaconda prompt 作为终端&#xff1a; 在 Anaconda Prompt 中依次运行以下命令&#xff08;注意大小写&#xff09;&#xff1a; pi…

评测 r5 8640HS和i5 12500H选哪个 锐龙r58640HS和酷睿i512500H对比

r7 8840HS采用 Zen 4架构 4 nm制作工艺8核 16线程主频 3.3GHz睿频5.1GHz 三 级缓存16MB TDP 功耗 28w 搭载AMD Radeon 780M核显 选r7 8840HS还是i5 12500H这些点很重要 http://www.adiannao.cn/dy i5 12500H为4大核8小核&#xff0c;12核心16线程设计&#xff0c;CPU主频 2.5…

面试知识汇总——垃圾回收器(分代收集算法)

分代收集算法 根据对象的存活周期&#xff0c;把内存分成多个区域&#xff0c;不同区域使用不同的回收算法回收对象。 对象在创建的时候&#xff0c;会先存放到伊甸园。当伊甸园满了之后&#xff0c;就会触发垃圾回收。 这个回收的过程是&#xff1a;把伊甸园中的对象拷贝到F…

Python私有属性和私有方法

私有属性和私有方法 在实际开发中&#xff0c;对象的某些属性或者方法只希望在对象内部被使用&#xff0c;而不希望在外界被访问。 私有属性&#xff1a;对象不希望公开的属性 私有方法&#xff1a;对象不希望公开的方法 定义方式&#xff1a;在属性名或者方法名前添加两个下划…

计算机网络常见题(持续更新中~)

1 描述一下HTTP和HTTPS的区别 2 Cookie和Session有什么区别 3 如果没有Cookie,Session还能进行身份验证吗&#xff1f; 4 BOI,NIO,AIO分别是什么 5 Netty的线程模型是怎么样的 6 Netty是什么&#xff1f;和Tomcat有什么区别&#xff0c;特点是什么&#xff1f; 7 TCP的三次…

基于SpringBoot+MyBatis网上点餐系统

采用技术 基于SpringBootMyBatis网上点餐系统的设计与实现~ 开发语言&#xff1a;Java 数据库&#xff1a;MySQL 技术&#xff1a;SpringBootMyBatis 工具&#xff1a;IDEA/Ecilpse、Navicat、Maven 页面展示效果 功能列表 前台首页功能 用户注册 用户登录 用户功能 …

【python】flask各种版本的项目,终端命令运行方式的实现

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

2-Flume之Sink与Channel

Flume Sink HDFS Sink 将数据写到HDFS上。数据以文件形式落地到HDFS上&#xff0c;文件名默认是以FlumeData开头&#xff0c;可以通过hdfs.filePrefix来修改 HDFS Sink默认每隔30s会滚动一次生成一个文件&#xff0c;因此会导致在HDFS上生成大量的小文件&#xff0c;实际过程…

人工智能 框架 paddlepaddle 飞桨 使用指南 使用例子 线性回归模型demo 1

安装过程&使用指南&线性回归模型 使用例子 本来预想 是安装 到 conda 版本的 11.7的 但是电脑没有gpu 所以 安装过程稍有变动,下面简单讲下 conda create -n paddle_env117 python=3.9 由于想安装11.7版本 py 是3.9 所以虚拟环境名称也是 paddle_env117 activa…

各种排序介绍

1.排序的概念 排序 &#xff1a;所谓排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大小&#xff0c;递增或递减的排列起来的操作。 稳定性 &#xff1a;假定在待排序的记录序列中&#xff0c;存在多个具有相同的关键字的记录&#xff0c;若经过排…

【沐风老师】3DMAX样条线皮肤SplineSkin插件使用方法详解

3DMAX样条线皮肤SplineSkin插件使用方法 3DMAX样条线皮肤插件SplineSkin&#xff0c;将3D物体一键转化为样条线包裹形状的插件&#xff0c;适用于科研绘图和艺术设计等相关领域。 【适用版本】 3dMax2015及更高版本&#xff08;教程编写于2024&#xff0c;但适用不仅限于此范围…