【C++】仿函数优先级队列反向迭代器

news2024/11/18 3:00:32

目录

一、优先级队列

1、priority_queue 的介绍

2、priority_queue 的使用

3、 priority_queue 的模拟实现

1)priority_queue()/priority_queue(first, last)

2)push(x)

3)pop()

4) top()

5) empty ()

​6)size ()

二、仿函数

1、定义

三、完整代码

四、反向迭代器

1、重新定义一个类

2、复用正向迭代器

3、完整代码


一、优先级队列

1、priority_queue 的介绍

⭕ 优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的。

⭕ 此上下文类似于,在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶部的元素)。

⭕优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从特定容器的“尾部”弹出,其称为优先队列的顶部。

⭕底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过随机访问迭代器访问,并支持以下操作:

empty():检测容器是否为空

size():返回容器中有效元素个数

front():返回容器中第一个元素的引用

push_back():在容器尾部插入元素

pop_back():删除容器尾部元素

⭕标准容器类vector和deque满足这些需求。默认情况下,如果没有为特定的priority_queue

⭕ 需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用算法函数 make_heap、push_heap和pop_heap来自动完成此操作。

【优先级队列的官方文档】

2、priority_queue 的使用

优先级队列默认使用 vector 作为其底层存储数据的容器,在 vector上又使用了堆算法将 vector 中元素构造成堆的结构,因此priority_queue就是堆,所有需要用到堆的位置,都可以考虑使用priority_queue。注意: 默认情况下priority_queue是大堆 

1)priority_queue()/priority_queue(first, last)

功能:构造一个空的优先级队列。

2)empty()

功能:检测优先级队列是否为空,是返回true,否则返回 false

3)top ()

功能:返回优先级队列最大(或最小)元素,即堆顶元素

4)push(x)

功能:在优先级队列中插入元素x

5)pop()

功能:删除优先级队列最大(或最小)元素,即堆顶元素

如果在priority_queue中放自定义类型的数据,用户需要在自定义类型中提供 > 或者< 的重载。

3、 priority_queue 的模拟实现

通过对 priority_queue 的底层结构就是堆,因此此处只需对对进行通用的封装即可。其底层本质是一个二叉树的堆,使用 vector 来构建,再加上堆的算法,将这个线性表构建成堆的结构。

1)priority_queue()/priority_queue(first, last)

优先级队列实例化出的对象本身就是一个堆,所以我们需要在它的构造函数里就将建堆工作做好。不像前面的stack和queue我们不需要写构造函数的,因为自定义成员变量,初始化时,会调用默认构造函数或者它自己的构造函数。而这里构造函数需要构造出一个堆,需要我们自己手动操作了。

优先级队列可以使用迭代器来初始化:

2)push(x)

先插入一个数据到数组里,但是需要保留堆的结构,我们可以使用向上调整法。

3)pop()

 删除堆顶元素,直接删除会破坏堆的结构。可以将堆顶元素和最后一个元素相交换,删除最后一个元素,将堆顶元素向下调整。

4) top()

返回堆顶元素。直接返回 _con 下标为0的值。

5) empty ()

检查优先级队列是否为空,直接判断 _con 是否为空即可。

 6)size ()

返回优先级队列的个数,返回 _con 的个数即可

二、仿函数

1、定义

仿函数(functor),就是使一个类或者结构体的使用看上去像一个函数。其实现就是类中重载 operator() 运算符,这个类就有了类似函数的行为,类的对象可以像函数一样使用。

我们在模拟实现优先级队列时会发现,我们只模拟了默认大堆的实现方式,如果要模拟实现小堆,难道要再重新写一份相同的代码吗?我们可以使用仿函数控制比较,进而控制大堆还是小堆,再增加一个模板参数用来传递仿函数,仿函数可以控制比较方式。这样就可以灵活的传递仿函数来控制创建大堆还是小堆。

三、完整代码

namespace zhou
{
	template<class T>
	class Less
	{
	public:

		bool operator()(T& x, T& y)//重载()运算符  
		{
			return x < y;
		}
	};

	template<class T>
	class Greater
	{
	public:

		bool operator()(T& x, T& y)//重载() 
		{
			return x > y;
		}
	};

	template<class T, class Container = vector<T>, class Comapre = less<T>>
	class priority_queue
	{
	 public:
		 

		void Adjustdown(int parent)
		{
			size_t child = 2 * parent + 1;
			while (child < _con.size())
			{
				//if (child + 1 < _con.size() && _con[child] < _con[child + 1)
				if (child + 1 < _con.size()
					&& com(_con[child], _con[child + 1]))
				{
					child++;
				}
				if (_con[parent] < _con[child])
				{
					swap(_con[parent], _con[child]);
					parent = child;
					child = 2 * parent + 1;
				}
				else
				{
					break;
				}
			}
		}
		template<class InputIterator>
		priority_queue(InputIterator begin, InputIterator last)
		{
			//第一首先将数据插入进去
			while (begin != last)
			{
				_con.push_back(*begin);
				++begin;
			}
			//第二需要建堆,默认建的是大堆--利用向下调整算法建堆
			//从最后一个叶子结点的父亲开始向下调整,然后依次往前走,直到走到堆顶。
			for (int i = (_con.size() - 1 - 1) / 2; i >= 0; i--)
			{
				Adjustdown(i);
			}
		}

		void Adjustup(int child)
		{
			Comapre com;
			size_t parent = (child - 1) / 2;
			while (child < _con.size())
			{
				//if (_con[child] > _con[parent])
				if (com(_con[parent], _con[child]))
				{
					swap(_con[child], _con[parent]);
					child = parent;
					parent = (child - 1) / 2;
				}
				else
				{
					break;
				}
			}

		}
		void push(const T& x)
		{
			_con.push_back(x);
			Adjustup(_con.size() - 1);
		}

		void pop()
		{
			swap(_con[0], _con[_con.size() - 1]);
			_con.pop_back();
			Adjustdown(0);
		}

		const T& top()
		{
			return _con[0];
		}

		bool empty()
		{
			return _con.empty();
		}

		size_t size()
		{
			return _con.size();
		}

	 private:
		Container _con;
	};

} 

四、反向迭代器

1、重新定义一个类

在 list 模拟实现的时候,只模拟实现了正向迭代器,反向迭代器还没有实现。接下来我们就可以来实现反向迭代器。之前我们是封装了一个类来实现正向迭代器,现在我们也同样封装一个反向迭代器的类。重新定义 rbegin() 和 rend().所以需要修改的是“++”和“--”的运算符重载。

 

【测验代码】

2、复用正向迭代器

⭕写一个反向迭代器固然可以实现目标的,但我们看 list 源代码时会发现他是对正向迭代器的复用。

⭕STL大佬在设计反向迭代器时,为了追求与正向迭代器的对称,将首尾指针得到指向反向保持一致,使rbegin()end()位置,rend()begin()位置。

⭕在这样的设计下,rbegin()和 rend()的实现就可以直接对应复用了,而 operator*()返回的就不是当前所指向的对象,而是成了上一个对象。

⭕前面在模拟实现list时,运用了多参数模板来解决const对象代码冗余问题,在反向迭代器的实现中也运用了相同原理,通过对形参传递不同的对象,变换为不同的迭代器,其中Ref表示引用对象,Ptr表示指针对象。

 

3、完整代码

//反向迭代器模拟实现
namespace zhou
{
	template<class Iterator, class Ref, class Ptr>
	struct ReverseIterator
	{
		typedef ReverseIterator<Iterator, Ref, Ptr> Self;
		Iterator _cur;

		//用正向迭代器来构造反向迭代器
		ReverseIterator(Iterator it)
			:_cur(it)
		{}

		Ref operator*()
		{
			//为了对称返回前一个位置
			Iterator tmp = _cur;
			--tmp;
			return *tmp;
		}

		Self& operator++()
		{
			--_cur;
			return *this;
		}

		Self& operator--()
		{
			++_cur;
			return *this;
		}

		bool operator!=(const Self& s)
		{
			return _cur != s._cur;
		}
	};
}

//完整 list 模拟实现
namespace zhou
{
	template<class T>
	struct list_node
	{
		list_node<T>* _next;
		list_node<T>* _prev;
		T _data;

		list_node(const T& x = T())
			:_next(nullptr)
			, _prev(nullptr)
			, _data(x)
		{}
	};

	template<class T, class Ref, class Ptr>
	struct __list_iterator
	{
		typedef list_node<T> node;
		typedef __list_iterator<T, Ref, Ptr> self;
		node* _node;

		__list_iterator(node* n)
			:_node(n)
		{}

		Ref operator*()
		{
			return _node->_data;
		}

		Ptr operator->()
		{
			return &_node->_data;
		}

		self& operator++()
		{
			_node = _node->_next;

			return *this;
		}

		self operator++(int)
		{
			self tmp(*this);
			_node = _node->_next;

			return tmp;
		}

		self& operator--()
		{
			_node = _node->_prev;

			return *this;
		}

		self operator--(int)
		{
			self tmp(*this);
			_node = _node->_prev;

			return tmp;
		}

		bool operator!=(const self& s)
		{
			return _node != s._node;
		}

		bool operator==(const self& s)
		{
			return _node == s._node;
		}
	};

	//定义一个反向迭代器的类
	/*template<class T, class Ref, class Ptr>
	struct __list_reverse_iterator
	{
		typedef list_node<T> node;
		typedef __list_reverse_iterator<T, Ref, Ptr> self;
		node* _node;

		__list_reverse_iterator(node* n)
			:_node(n)
		{}

		Ref operator*()
		{
			return _node->_data;
		}

		Ptr operator->()
		{
			return &_node->_data;
		}

		self& operator++()
		{
			_node = _node->_prev;

			return *this;
		}

		self operator++(int)
		{
			self tmp(*this);
			_node = _node->_prev;

			return tmp;
		}

		self& operator--()
		{
			_node = _node->_next;

			return *this;
		}

		self operator--(int)
		{
			self tmp(*this);
			_node = _node->_next;

			return tmp;
		}

		bool operator!=(const self& s)
		{
			return _node != s._node;
		}

		bool operator==(const self& s)
		{
			return _node == s._node;
		}
	};*/

	template<class T>
	class list
	{
		typedef list_node<T> node;
	public:
		typedef __list_iterator<T, T&, T*> iterator;
		typedef __list_iterator<T, const T&, const T*> const_iterator;

		//typedef __list_reverse_iterator<T, T&, T*> reverse_iterator;
		typedef ReverseIterator<iterator, T&, T*> reverse_iterator;
		typedef ReverseIterator<iterator, const T&, const T*> const_reverse_iterator;
		
		reverse_iterator rbegin()
		{
			return reverse_iterator(end());
		}

		reverse_iterator rend()
		{
			return reverse_iterator(begin());
		}

		/*reverse_iterator rbegin()
		{
			return reverse_iterator(_head->_prev);
		}

		reverse_iterator rend()
		{
			return reverse_iterator(_head);
		}*/

		iterator begin()
		{
			return iterator(_head->_next);
		}

		const_iterator begin() const
		{
			return const_iterator(_head->_next);
		}

		iterator end()
		{
			return iterator(_head);
		}

		const_iterator end() const
		{
			//iterator it(_head->_next);
			//return it;
			return const_iterator(_head);
		}

		void empty_init()
		{
			_head = new node;
			_head->_next = _head;
			_head->_prev = _head;
		}

		list()
		{
			empty_init();
		}

		template <class Iterator>
		list(Iterator first, Iterator last)
		{
			empty_init();

			while (first != last)
			{
				push_back(*first);
				++first;
			}
		}


		void swap(list<T>& tmp)
		{
			std::swap(_head, tmp._head);
		}

		list(const list<T>& lt)
		{
			empty_init();

			list<T> tmp(lt.begin(), lt.end());
			swap(tmp);
		}

		// lt1 = lt3
		list<T>& operator=(list<T> lt)
		{
			swap(lt);
			return *this;
		}

		~list()
		{
			clear();
			delete _head;
			_head = nullptr;
		}

		void clear()
		{
			iterator it = begin();
			while (it != end())
			{
				//it = erase(it);
				erase(it++);
			}
		}

		void push_back(const T& x)
		{

			insert(end(), x);
		}

		void push_front(const T& x)
		{
			insert(begin(), x);
		}

		void pop_back()
		{
			erase(--end());
		}

		void pop_front()
		{
			erase(begin());
		}

		void insert(iterator pos, const T& x)
		{
			node* cur = pos._node;
			node* prev = cur->_prev;

			node* new_node = new node(x);

			prev->_next = new_node;
			new_node->_prev = prev;
			new_node->_next = cur;
			cur->_prev = new_node;
		}

		iterator erase(iterator pos)
		{
			assert(pos != end());

			node* prev = pos._node->_prev;
			node* next = pos._node->_next;

			prev->_next = next;
			next->_prev = prev;
			delete pos._node;

			return iterator(next);
		}
	private:
		node* _head;
	};

	void list_list1()
	{
		list<int> lt;
		lt.push_back(1);
		lt.push_back(2);
		lt.push_back(3);
		lt.push_back(4);
		lt.push_back(5);
		for (auto e : lt)
		{
			cout << e << " ";
		}
		cout << endl;

		list<int>::reverse_iterator rit = lt.rbegin();
		while (rit != lt.rend())
		{
			cout << *rit << " ";
			++rit;
		}
	}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1540620.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

web自动化--元素定位之xpath和css

元素定位 xpath绝对路径相对路径案例xpath策略&#xff08;路径&#xff09;案例xpath策略&#xff08;层级、扩展&#xff09;属性层级与属性层级与属性拓展层级与属性综合 csscss选择器&#xff08;id、类、标签、属性&#xff09;id选择器类选择器标签选择器属性选择器案例-…

2024年 前端JavaScript Web APIs 第五天 笔记

5.1-BOM和延迟函数setTimeout 5.2-事件循环eventloop 1-》 3 -》2 1-》 3 -》2 5.3-location对象 案例&#xff1a;5秒钟之后自动跳转页面 <body><a href"http://www.itcast.cn">支付成功<span>5</span>秒钟之后跳转到首页</a><sc…

对话Midjourney创始人:图片仅是起步,人工智能将全面改变学习、创意和组织。

ChatGPT狂飙160天&#xff0c;世界已经不是之前的样子。 新建了人工智能中文站https://ai.weoknow.com 每天给大家更新可用的国内可用chatGPT资源 ​ 发布在https://it.weoknow.com 关注我 Midjourney 是一家神奇的公司&#xff0c;11 人改变世界&#xff0c;创造伟大的产品。…

并发编程-Synchronized介绍(结合源码和hostpot说明)

目录 一、Synchronized 概述 二、Synchronized在并发编程中解决的问题 2.1 解决原子性问题 2.1.1 问题代码 2.1.2 执行结果 2.1.3 优化代码 2.1.4 测试结果 2.1.5 优化代码分析 2.1.5.1 编译java源文件程序 2.1.5.2 查看编译文件 2.1.5.3 分析编译文件 2.2 解决可见…

windows安装ssh

一、下载ssh https://github.com/PowerShell/Win32-OpenSSH/releases/download/v8.1.0.0p1-Beta/OpenSSH-Win64.zip 二、安装ssh 解压到C:\Program Files\OpenSSH-Win64 配置环境变量 把 C:\Program Files\OpenSSH-Win64 加到path环境变量里面 C:\Program Files\OpenSSH-Win64&…

百度文心一言(ERNIE bot)API接入Android应用

百度文心一言&#xff08;ERNIE bot&#xff09;API接入Android应用实践 - 拾一贰叁 - 博客园 (cnblogs.com) Preface: 现在生成式AI越来越强大了&#xff0c;想在android上实现一个对话助手的功能&#xff0c;大概摸索了一下接入百度文心一言API的方法。 与AI助手交换信息的…

elementary OS7 Ubuntu 22.04中硬盘挂载报错

elementary OS7 Ubuntu 22.04中硬盘挂载报错 背景目标思路解决方法 背景 上周末安装elementaryos7的过程中将windows10的引导文件搞丢了&#xff0c;这两天准备修复一下&#xff0c;保险期间将固态硬盘上的文件备份到移动硬盘上&#xff0c;备份过程中出现报错的问题&#xff…

DUKPT流程简析

文章目录 一、DUKPT流程简析 一、DUKPT流程简析 接着上一篇文章DUKPT讲 依旧引用上图&#xff0c;我们单看POS和Acquirer Host这两个结点之间&#xff08;其它结点之间的处理&#xff0c;基本类似&#xff09;&#xff1a; Acquirer在布放POS到商场时&#xff0c;已经提前给…

【C语言进阶篇】文件操作(上)

【C语言进阶篇】文件操作&#xff08;上&#xff09; &#x1f955;个人主页&#xff1a;开敲 &#x1f525;所属专栏&#xff1a;C语言 &#x1f33c;文章目录&#x1f33c; 1. 为什么使用文件&#xff1f; 2. 什么是文件&#xff1f; 2.1 程序文件 2.2 数据文件 2.3 文件名…

dubbo 源码系列之-集群三板斧---负载均衡(二)

在上一课时我们了解了 LoadBalance 接口定义以及 AbstractLoadBalance 抽象类的内容&#xff0c;还详细介绍了 ConsistentHashLoadBalance 以及 RandomLoadBalance 这两个实现类的核心原理和大致实现。本课时我们将继续介绍 LoadBalance 的剩余三个实现。 LeastActiveLoadBala…

模拟实现 atoi 函数

一、函数介绍 原型 int atoi(const char *nptr); 二、使用atoi 三、使用发现 可以发现&#xff1a;会先过滤掉空格&#xff0c;还能识别正负号&#xff0c;当第一次遇到正负号了&#xff0c;后面没接着是数字就返回0&#xff0c; 如果45 5aa 结果是45&#xff0c;说明前面识…

Pytorch CUDA Reflect Padding 算子实现详解

CUDA 简介 CUDA&#xff08;Compute Unified Device Architecture&#xff09;是由NVIDIA开发的一种并行计算平台和应用编程接口&#xff08;API&#xff09;&#xff0c;允许软件开发者和软件工程师使用NVIDIA的图形处理单元&#xff08;GPU&#xff09;进行通用计算。自2007…

2024年C语言最新经典面试题汇总(11-20)

C语言文章更新目录 C语言学习资源汇总&#xff0c;史上最全面总结&#xff0c;没有之一 C/C学习资源&#xff08;百度云盘链接&#xff09; 计算机二级资料&#xff08;过级专用&#xff09; C语言学习路线&#xff08;从入门到实战&#xff09; 编写C语言程序的7个步骤和编程…

Chapter 17 Input Filter Design

Chapter 17 Input Filter Design 在switching converter前面我们总想加一个input filter, 这样可以减少输入电流的谐波EMI(conducted electromagnetic interference). 另外, Input filter可以保护converter和负载不受输入电压瞬态变化的影响, 从而提高了系统稳定性. 如下图所…

BEVFormer v2论文阅读

摘要 本文工作 提出了一种具有透视监督&#xff08;perspective supervision&#xff09;的新型鸟瞰(BEV)检测器&#xff0c;该检测器收敛速度更快&#xff0c;更适合现代图像骨干。现有的最先进的BEV检测器通常与VovNet等特定深度预训练的主干相连&#xff0c;阻碍了蓬勃发展…

C++命名空间和内联函数

目录 命名空间 内联函数 概述 特性&#xff1a; 命名空间 在C/C中&#xff0c;变量&#xff0c;函数和和类这些名称都存在于全局作用域中&#xff0c;可能会导致很多冲突&#xff0c;使用命名空间的目的是对标识符的名称进行本地化&#xff0c;避免命名冲突或名字污染&…

鸿蒙OpenHarmony开发实战:【MiniCanvas】

介绍 基于OpenHarmony的Cavas组件封装了一版极简操作的MiniCanvas&#xff0c;屏蔽了原有Canvas内部复杂的调用流程&#xff0c;支持一个API就可以实现相应的绘制能力&#xff0c;该库还在继续完善中&#xff0c;也欢迎PR。 使用说明 添加MiniCanvas依赖 在项目entry目录执行…

由浅到深认识Java语言(21):Math类

该文章Github地址&#xff1a;https://github.com/AntonyCheng/java-notes 在此介绍一下作者开源的SpringBoot项目初始化模板&#xff08;Github仓库地址&#xff1a;https://github.com/AntonyCheng/spring-boot-init-template & CSDN文章地址&#xff1a;https://blog.c…

UE像素流公网(Windows、Liunx)部署无需GPU服务器

@TOC 前言 之前有个前端地图服务项目要改成UE来渲染3D,有需要在云服务器上多实例运行,所以就先研究了Windows版本的像素流云渲染,后来客户的云服务器是Linux版CectOS系统,加上又有了一些后端服务在上面运行了不能重装成Windows,所以就又着手去研究了Linux系统的云渲染。…

【动手学深度学习】深入浅出深度学习之PyTorch基础

目录 一、实验目的 二、实验准备 三、实验内容 1. 数据操作 2. 数据预处理 3. 线性代数 4. 微积分 5. 自动微分 四、实验心得 一、实验目的 &#xff08;1&#xff09;正确理解深度学习所需的数学知识&#xff1b; &#xff08;2&#xff09;学习一些关于数据的实用…