EI级!高创新原创未发表!VMD-TCN-BiGRU-MATT变分模态分解卷积神经网络双向门控循环单元融合多头注意力机制多变量时间序列预测(Matlab)

news2025/1/13 9:49:58

EI级!高创新原创未发表!VMD-TCN-BiGRU-MATT变分模态分解卷积神经网络双向门控循环单元融合多头注意力机制多变量时间序列预测(Matlab)

目录

    • EI级!高创新原创未发表!VMD-TCN-BiGRU-MATT变分模态分解卷积神经网络双向门控循环单元融合多头注意力机制多变量时间序列预测(Matlab)
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现VMD-TCN-BiGRU-MATT变分模态分解结合卷积神经网络双向门控循环单元融合多头注意力机制多变量时间序列预测;
2.运行环境为Matlab2023及以上;
3.输入多个特征,输出单个变量,考虑历史特征的影响,多变量时间序列预测;
4.data为数据集,main1-VMD.m、main2-VMD-TCN-BiGRU-MATT.m为主程序,运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MSE、MAE、MAPE和RMSE多指标评价;
VMD-TCN-BiGRU-MATT模型是一种结合了变分模态分解(VMD)、时间卷积神经网络(TCN)、双向门控循环单元(BiGRU)以及多头注意力机制(MATT)的多变量时间序列预测模型。该模型旨在充分利用各种技术的优势,以提高时间序列预测的准确性和稳定性。

首先,VMD技术用于对原始时间序列数据进行预处理。通过VMD,可以将复杂的时间序列信号分解为若干个模态分量,从而提取出原始数据中的有用信息和特征。这有助于降低数据的复杂性,并使得后续的特征提取和预测过程更加高效。

接下来,TCN用于进一步提取时间序列数据中的局部特征。TCN具有扩张因果卷积结构,能够捕捉序列中的长期依赖关系,并通过卷积操作提取出重要的局部特征。这些特征对于后续的预测过程至关重要。

然后,BiGRU网络被引入以处理序列数据中的短期和长期依赖关系。BiGRU是一种具有记忆单元的递归神经网络,能够充分利用序列数据的时序信息。通过将TCN提取的特征输入到BiGRU网络中,可以进一步提高模型的预测能力。

最后,多头注意力机制(MATT)被整合到模型中,以进一步提高预测精度。MATT允许模型对序列的不同部分进行注意力运算,从而更准确地捕捉关键信息。通过将独立的注意力输出串联起来并线性地转化为预期维度,MATT能够帮助模型更好地理解输入序列的复杂结构和依赖关系。

综上所述,VMD-TCN-BiGRU-MATT模型通过结合VMD、TCN、BiGRU和MATT等多种技术,实现了对多变量时间序列的有效预测。该模型能够充分利用各种技术的优势,提高预测精度和稳定性,对于处理复杂时间序列数据具有重要的应用价值。在实际应用中,可以根据具体的数据和任务需求对该模型进行进一步的优化和调整。

程序设计

  • 完整程序和数据获取方式私信博主回复Matlab实现VMD-TCN-BiGRU-MATT变分模态分解结合卷积神经网络双向门控循环单元融合多头注意力机制多变量时间序列预测



%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行

%%  导入数据
res =xlsread('data.xlsx');

%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例

num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度

%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);

P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);

f_ = size(P_train, 1);                  % 输入特征维度

%%  数据归一化
layer = sequenceInputLayer(f_,Normalization="rescale-symmetric",Name="input");
lgraph = layerGraph(layer);

outputName = layer.Name;

for i = 1:numBlocks
    dilationFactor = 2^(i-1);
    
    layers = [
        convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal",Name="conv1_"+i)
        layerNormalizationLayer
        dropoutLayer(dropoutFactor) 
        % spatialDropoutLayer(dropoutFactor)
        convolution1dLayer(filterSize,numFilters,DilationFactor=dilationFactor,Padding="causal")
        layerNormalizationLayer
        reluLayer
        dropoutLayer(dropoutFactor) 
        additionLayer(2,Name="add_"+i)];

    % Add and connect layers.
    lgraph = addLayers(lgraph,layers);
    lgraph = connectLayers(lgraph,outputName,"conv1_"+i);

    % Skip connection.
    if i == 1
        % Include convolution in first skip connection.
        layer = convolution1dLayer(1,numFilters,Name="convSkip");

        lgraph = addLayers(lgraph,layer);
        lgraph = connectLayers(lgraph,outputName,"convSkip");
        lgraph = connectLayers(lgraph,"convSkip","add_" + i + "/in2");
    else
        lgraph = connectLayers(lgraph,outputName,"add_" + i + "/in2");
    end
    
    % Update layer output name.
    outputName = "add_" + i;
end


tempLayers = flattenLayer("Name","flatten");
lgraph = addLayers(lgraph,tempLayers);

参考资料

[1] https://blog.csdn.net/kjm13182345320/category_11799242.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/124571691

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1539889.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

阿里云4核16G服务器价格26.52元1个月、149.00元半年,ECS经济型e实例

阿里云4核16G服务器优惠价格26.52元1个月、79.56元3个月、149.00元半年,配置为阿里云服务器ECS经济型e实例ecs.e-c1m4.xlarge,4核16G、按固定带宽 10Mbs、100GB ESSD Entry系统盘,活动链接 aliyunfuwuqi.com/go/aliyun 活动链接打开如下图&a…

【数据挖掘】实验4:数据探索

实验4:数据探索 一:实验目的与要求 1:熟悉和掌握数据探索,学习数据质量分类、数据特征分析和R语言的主要数据探索函数。 二:实验内容 1:数据质量分析 2:统计量分析 3:贡献度分析…

【黄啊码】如何用GPT和向量数据库做问答型AI

知识库服务依赖该数据库,Embedding 形式个性化训练 ChatGPT,必不可少的就是向量数据库 因为 qdrant 向量数据库只支持 Docker 部署,所以需要先安装好 Docker 服务。 命令行安装 拉取镜像 docker pull qdrant/qdrant 运行服务 docker run -…

查立得源码如何去除版权

最近发现很多人百度:查立得源码如何去除版权。 每个源代码/软件都是有版权的,无法去除,我们也得尊重知识产权/劳动成果。 可以去除/修改的是:页面显示的版权信息,查立得底部信息均可自定义(一般conn.php可修改)。 另&#xff1…

图床项目实战:后续开发与优化

在之前的文章中,我们介绍了图床项目的基本实现,接下来,我将提供扩展功能和优化性能的关键代码片段。 一、图片分类管理 首先,我们需要在数据库中创建分类表,并在图片表中添加分类字段。 class Category(db.Model): …

STM32---DHT11采集与BH1750FVI光照传感器(HAL库、含源码)

写在前面:本节我们学习使用两个常见的传感器模块,分别为DHT11温湿度传感器以及BH1750FVI光照传感器,这两种传感器在对于环境监测中具有十分重要的作用,因为其使用简单方便,所以经常被用于STM32的项目之中。今天将使用分享给大家&a…

会员中心微服务

文章目录 1.环境配置1.创建会员中心模块2.检查父子模块的pom.xml1.父模块注意:如果父模块中的依赖显示not found,原因是子模块并没有引用,不用在意 2.子模块 3.pom.xml 引入相关依赖(别忘记刷新maven)4.application.ym…

【保姆级教程】YOLOv8目标检测:训练自己的数据集

一、YOLOV8环境准备 1.1 下载安装最新的YOLOv8代码 仓库地址: https://github.com/ultralytics/ultralytics1.2 配置环境 pip install -r requirements.txt -i https://pypi.tuna.tsinghua.edu.cn/simple二、数据准备 2.1 安装labelme标注软件 pip install label…

主干网络篇 | YOLOv8更换主干网络之GhostNet

前言:Hello大家好,我是小哥谈。GhostNet是2019年由华为诺亚方舟实验室发布的轻量级网络,速度和MobileNetV3相似,但是识别的准确率比MobileNetV3高,在ImageNet ILSVRC2012分类数据集的达到了75.7%的top-1精度。该论文提除了Ghost模块,通过廉价操作生成更多的特征图。基于一…

如何用pytorch调用预训练Swin Transformer中的一个Swin block模块

1,首先,我们需要知道的是,想要调用预训练的Swin Transformer模型,必须要安装pytorch2,因为pytorch1对应的torchvision中不包含Swin Transformer。 2,pytorch2调用预训练模型时,不建议使用pretr…

Uibot6.0 (RPA财务机器人师资培训第3天 )财务招聘信息抓取机器人案例实战

训练网站:泓江科技 (lessonplan.cn)https://laiye.lessonplan.cn/list/ec0f5080-e1de-11ee-a1d8-3f479df4d981https://laiye.lessonplan.cn/list/ec0f5080-e1de-11ee-a1d8-3f479df4d981https://laiye.lessonplan.cn/list/ec0f5080-e1de-11ee-a1d8-3f479df4d981(本博…

基于python+vue成都旅游网flask-django-php-nodejs

本篇论文对成都旅游网的需求分析、功能设计、系统设计进行了较为详尽的阐述,并对系统的整体设计进行了阐述,并对各功能的实现和主要功能进行了说明,并附上了相应的操作界面图。 语言:Python 框架:django/flask 软件版本…

阿里云幻兽帕鲁4核16G和8核32G服务器优惠价格

2024阿里云幻兽帕鲁专用服务器价格表:4核16G幻兽帕鲁专用服务器26元一个月、149元半年,默认10M公网带宽,8核32G幻兽帕鲁服务器10M带宽价格90元1个月、271元3个月。阿里云提供的Palworld服务器是ECS经济型e实例,CPU采用Intel Xeon …

3.22 ARM day7

实现三个按键的中断,现象和代码 include/key_inc.h: #ifndef __KEY_INC_H__ #define __KEY_INC_H__ #include "stm32mp1xx_gic.h" #include "stm32mp1xx_exti.h" #include "stm32mp1xx_rcc.h" #include "stm32mp1x…

部标JT808车辆定位监控平台单服务器13.6万接入压力测试记录(附源码)

之前经常有人问平台能支持多少设备同时在线,由于事情多没时间做。最近刚好有机会做下压力测试。在不间断的连续压测三天,最终结果为13.6万TCP连接,30秒上报频率。 一、测试目的 测试平台同时接入设备数量与并发处理能力。 二、准备环境 一…

阿里云幻兽帕鲁专用服务器创建教程,新手0基础

玩转幻兽帕鲁服务器,阿里云推出新手0基础一键部署幻兽帕鲁服务器教程,傻瓜式一键部署,3分钟即可成功创建一台Palworld专属服务器,成本仅需26元,阿里云服务器网aliyunfuwuqi.com分享2024年新版基于阿里云搭建幻兽帕鲁服…

算法---前缀和练习-1(除自身以外数组的乘积)

除自身以外数组的乘积 1. 题目解析2. 讲解算法原理3. 编写代码 1. 题目解析 题目地址:点这里 2. 讲解算法原理 首先,创建两个辅助数组 f 和 g,它们的长度与 nums 相同。数组 f 用于存储每个元素左侧所有元素的乘积,数组 g 用于存…

常见研发设计软件的许可管理

大型工程软件如Ansys、CAD、Fluent、Unigraph、ProE、HyperWorks、UG/NX,minitab等安装需要经过注册程序Flexlm才可以使用,而Flexlm中涉及到很多知识、技巧,也存在许多问题。本篇文章就是针对上述软件安装中的常见问题作一些探讨与解决。莱曼…

目标检测预测框可视化python代码实现--OpenCV

import numpy as np import cv2 import colorsys from PIL import Image, ImageDraw, ImageFontdef puttext_cn(img, text, pt, color(255,0,0), size16):if (isinstance(img, np.ndarray)): # 判断是否OpenCV图片类型img Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2…