MNN Session 之 Vulkan 算子(八)

news2025/1/18 10:32:13

在这里插入图片描述

系列文章目录


MNN createFromBuffer(一)
MNN createRuntime(二)
MNN createSession 之 Schedule(三)
MNN createSession 之创建流水线后端(四)
MNN Session 之维度计算(五)
MNN Session 之几何计算(六)
MNN Session 之 CPU 算子(七)
MNN Session 之 Vulkan 算子(八)


文章目录

  • 系列文章目录
  • 1、createSession
    • 1.1 createMultiPathSession
    • 1.1.1 Session::resize
    • 1.1.1.1 Pipeline::allocMemory
    • 1.1.1.1.1 _createExecutions
    • 1.1.1.1.1.1 VulkanBackend::onCreate
    • 1.1.1.1.1.1.1 VulkanBackend::Creator::onCreate
    • 1.1.1.1.1.1.2 VulkanBasicExecution
    • 1.1.1.1.1.1.3 Vulkan 算子执行实例注册
      • 添加Vulkan实现
      • 添加Metal实现
      • 添加OpenCL实现
      • 添加OpenGL实现
    • 1.1.1.1.1.1.4 VulkanBasicExecutionDirect
    • 1.1.1.1.1.1.5 VulkanBasicExecutionDirect::VulkanBasicExecutionDirect
    • 1.1.1.1.1.1.6 VulkanBasicExecutionInDirect
    • 1.1.1.1.1.2 CPUBackend::onCreate
    • 1.1.1.1.2 Backend::onResizeBegin
    • 1.1.1.1.3 Execution::onResize
    • 1.1.1.1.4 Backend::onResizeEnd
    • 1.1.1.1.5 Execution::onExecute


1、createSession

在这里插入图片描述
在这里插入图片描述

    依据 ScheduleConfig 和 RuntimeInfo 创建会话。

// source/core/Interpreter.cpp
Session* Interpreter::createSession(const ScheduleConfig& config, const RuntimeInfo& runtime) {
    return createMultiPathSession({config}, runtime);
}

1.1 createMultiPathSession

createMultiPathSession 完整代码

// source/core/Interpreter.cpp
Session* Interpreter::createMultiPathSession(const std::vector<ScheduleConfig>& configs, const RuntimeInfo& runtime) {
	// ...
    auto result = newSession.get();
    auto validForResize = info.validForResize;
    if (validForResize && mNet->modes.inputMode == Session_Input_Inside && mNet->modes.resizeMode == Session_Resize_Direct) {
        result->resize();
    }
    // ...
    return result;
}

1.1.1 Session::resize

Session::resize 完整代码

// source/core/Session.cpp
ErrorCode Session::resize() {
	// ...
    if (mNeedMalloc) {
        // Set needResize = true for easy for judge in runSession when error
        mNeedResize = true;
        // Turn Pipeline to Command Buffer and Malloc resource
        // TODO: Separate Schedule and Malloc
        bool forbidReplace = permitCodegen;
        if (mInfo.constReplaceBackend != nullptr) {
            forbidReplace = true;
        }
        for (auto& iter : mPipelines) {
            auto error = iter->allocMemory(firstMalloc, forbidReplace);
            if (NO_ERROR != error) {
                return error;
            }
        }
        // ...
        mNeedMalloc = false;
        mNeedResize = false;
    }
	// ...
    return NO_ERROR;
}

1.1.1.1 Pipeline::allocMemory

BackendCache、OpCacheInfo

// source/core/Pipeline.cpp
// typedef std::pair<BackendCache, std::vector<OpCacheInfo>> PipelineInfo;
//
//   struct BackendCache {
//      Backend::Info info;
//      BackendConfig config;
//      std::pair<std::shared_ptr<Backend>, std::shared_ptr<Backend>> cache;
//      bool needComputeShape = true;
//      bool needComputeGeometry = true;
//      bool reportError = true;
//      std::map<Tensor*, TENSORCACHE> inputTensorCopyCache;
//  };
//
//    /** pipeline info */
//    struct OpCacheInfo {
//        /** op */
//        const Op* op;
//        /** input tensors */
//        std::vector<Tensor*> inputs;
//        /** output tensors */
//        std::vector<Tensor*> outputs;
//        /** schedule type*/
//        Schedule::Type type = Schedule::Type::SEPARATE;
//
//        /**Command buffer for cache*/
//        CommandBuffer cacheBuffer;
//
//        /**Command buffer for execute*/
//        CommandBuffer executeBuffer;
//        
//        std::map<const Op*, std::shared_ptr<Execution>> executionCache;
//    };
//
ErrorCode Pipeline::allocMemory(bool firstMalloc, bool forbidReplace) {
    // MNN_PRINT("allocMemory mtype:%d, cpubackendType:%d, cpuBackend runtime:%p\n", mBackend->type(), mBackupBackend->type(), mBackupBackend->getRuntime());
    if (!firstMalloc) {
        // For session setNeedMalloc, if session's output is set as some input, It may cause error
        // Dup des to avoid it
        for (auto& info : mInfo.second) {
            auto& buffer = info.executeBuffer;
            for (const auto& infoP : buffer.command) {
                auto& info = *infoP;
                for (auto t : info.workOutputs) {
                    if (!TensorUtils::getDescribe(t)->isMutable) {
                        continue;
                    }
                    auto des = TensorUtils::getDescribe(t);
                    auto usage = des->usage;
                    if (TensorUtils::getDescribeOrigin(t)->mContent->count() > 1) {
                        TensorUtils::getDescribeOrigin(t)->mContent = new Tensor::InsideDescribe::NativeInsideDescribe;
                        auto dstDes = TensorUtils::getDescribe(t);
                        t->buffer().dim = dstDes->dims;
                        ::memcpy(t->buffer().dim, des->dims, MNN_MAX_TENSOR_DIM * sizeof(halide_dimension_t));
                        dstDes->dimensionFormat = des->dimensionFormat;
                        dstDes->usage = usage;
                        dstDes->regions = des->regions;
                        dstDes->quantAttr = des->quantAttr;
                        dstDes->tensorArrayAttr = des->tensorArrayAttr;
                    }
                }
            }
        }
    }

	// mInfo 类型为 typedef std::pair<BackendCache, std::vector<OpCacheInfo>> PipelineInfo;
	// 开始创建 Execution 
    /* Create Execution Begin */
    // mInfo.first 类型为 BackendCache
    // mInfo.first.cache.first 类型为 std::shared_ptr<Backend>,即主动创建的 VulkanBackend
    auto& mBackend = mInfo.first.cache.first;
    // mInfo.first.cache.second 类型为 std::shared_ptr<Backend>,即后备 CPUBackend
    auto& mBackupBackend = mInfo.first.cache.second;
    mBackend->onClearBuffer();
    mBackupBackend->onClearBuffer();
    // Check If we need a lone time for init
    if (mBackend->type() != MNN_FORWARD_CPU && mBackend->type() != MNN_FORWARD_CPU_EXTENSION && mTuneAttr.autoSetOpType) {
        Runtime::OpInfo dstInfo;
        int currentInitCount = 0;
        std::vector<Schedule::OpCacheInfo> initInfos;
        for (auto& info : mInfo.second) {
            auto& buffer = info.executeBuffer;
            for (auto& iterP : buffer.command) {
                auto& iter = *iterP;
                dstInfo.initCostLong = false;
                mRuntime->onMeasure(iter.inputs, iter.outputs, iter.op, dstInfo);
                if (dstInfo.initCostLong) {
                    initInfos.emplace_back(info);
                    currentInitCount++;
                    break;
                }
            }
            if (currentInitCount >= mTuneAttr.maxTuningNumber) {
                break;
            }
        }
        if (currentInitCount > 0) {
            MNN_PRINT("Turn back to cpu\n");
            // Reset execution
            for (auto& info : mInfo.second) {
                info.executionCache.clear();
                for (auto& iterP : info.executeBuffer.command) {
                    iterP->execution = nullptr;
                    iterP->execution = nullptr;
                    _recycleDynamicMemory(iterP.get());
                }
            }
            if (!mRuntime->hasAsyncWork()) {
                _pushTuningTask(std::move(initInfos));
            }
            mBackend.reset(mCpuRuntime->onCreate(nullptr));
        }
    }
    {
    	// 创建 Execution 
        auto code = _createExecutions(mInfo);
        if (NO_ERROR != code) {
            return code;
        }
    }
    /* Create Execution End */

    _SetTensorBackend(mInfo, mAllocInput);
    // Insert Wrap If needed
    {
        auto insertCode = _InsertCopy(mInfo, mCacheConstTensors, mShapeFixConstCache, mAllocInput, forbidReplace);
        if (NO_ERROR != insertCode) {
            return insertCode;
        }
    }
    /* Insert Wrap End*/

    // Compute RefCount Begin
    for (auto& info : mInfo.second) {
        auto& buffer = info.executeBuffer;
        // MNN_PRINT("before resize, mInfo.second size:%lu, command size:%lu,op type:%s, op name:%s\n", mInfo.second.size(), buffer.command.size(), EnumNameOpType(info.op->type()), info.op->name()->c_str());
        for (auto& iterP : buffer.command) {
            auto& iter = *iterP;
            for (auto t : iter.workInputs) {
                auto des = TensorUtils::getDescribe(t);
                if (des->usage != Tensor::InsideDescribe::CONSTANT) {
                    des->useCount = 0;
                }
            }
        }
    }
    for (auto& info : mInfo.second) {
        auto& buffer = info.executeBuffer;
        for (auto& iterP : buffer.command) {
            auto& iter = *iterP;
            for (auto t : iter.workInputs) {
                auto des = TensorUtils::getDescribe(t);
                if (des->usage != Tensor::InsideDescribe::CONSTANT) {
                    des->useCount += 1;
                }
            }
        }
    }
    // Compute RefCount End

    // Alloc tensor
    mBackend->onResizeBegin();
    mBackupBackend->onResizeBegin();
    for (auto& info : mInfo.second) {
        auto& buffer = info.executeBuffer;
        for (int cmdIndex=0; cmdIndex < buffer.command.size(); ++cmdIndex) {
            auto& iterP = buffer.command[cmdIndex];
            auto& iter = *iterP;
#ifdef MNN_PIPELINE_DEBUG
            auto memory = const_cast<Runtime*>(mRuntime)->onGetMemoryInMB();
            if (nullptr != info.op->name()) {
                MNN_PRINT("%f, before Resize: %s - %d\n", memory, info.op->name()->c_str(), cmdIndex);
            }
#endif

            // MNN_PRINT("before Resize: optype:%s, name:%s, input0:%p, output0:%p, mAllocInput:%d\n", EnumNameOpType(iter.op->type()), iter.info->name().c_str(), iter.inputs[0], iter.outputs[0], mAllocInput);
            // Alloc for Tensors
            auto curBackend = iter.execution->backend();
            if (mAllocInput) {
                for (auto t : iter.workInputs) {
                    auto allocRes = _allocTensor(t, curBackend, mOutputStatic);
                    if (!allocRes) {
                        return OUT_OF_MEMORY;
                    }
                }
            }
            {
                for (auto t : iter.workOutputs) {
                    auto res = _allocTensor(t, curBackend, mOutputStatic);
                    if (!res) {
                        return OUT_OF_MEMORY;
                    }
                }
            }
#ifdef MNN_PIPELINE_DEBUG
            if (iter.info != nullptr) {
                MNN_PRINT("before Resize 2, calling: %s - %d \n", iter.info->name().c_str(), cmdIndex);
            }
#endif
            auto code = iter.execution->onResize(iter.workInputs, iter.workOutputs);
            if (NO_ERROR != code) {
#ifdef MNN_PIPELINE_DEBUG
                MNN_ERROR("Pipeline Resize error: %d\n", code);
#endif
                if (iter.info.get()) {
                    MNN_ERROR("Resize error for type = %s, name = %s \n", iter.info->type().c_str(), iter.info->name().c_str());
                }
                return code;
            }
            // Free mid tensor
            for (auto t : iter.workInputs) {
                _releaseTensor(t, mAllocInput);
            }
        }
    }
    // Recycle All Dynamic Tensor
    for (auto& info : mInfo.second) {
        auto& buffer = info.executeBuffer;
        for (auto& c : buffer.command) {
            _recycleDynamicMemory(c.get());
        }
    }
    auto code = mBackend->onResizeEnd();
    if (code != NO_ERROR) {
        return code;
    }
    code = mBackupBackend->onResizeEnd();
    return code;
}

1.1.1.1.1 _createExecutions

OpCacheInfo 、BackendCache、Command、CommandBuffer

// source/core/Pipeline.cpp
// typedef std::pair<BackendCache, std::vector<OpCacheInfo>> PipelineInfo;
//
//   struct BackendCache {
//      Backend::Info info;
//      BackendConfig config;
//      std::pair<std::shared_ptr<Backend>, std::shared_ptr<Backend>> cache;
//      bool needComputeShape = true;
//      bool needComputeGeometry = true;
//      bool reportError = true;
//      std::map<Tensor*, TENSORCACHE> inputTensorCopyCache;
//  };
//
//    /** pipeline info */
//    struct OpCacheInfo {
//        /** op */
//        const Op* op;
//        /** input tensors */
//        std::vector<Tensor*> inputs;
//        /** output tensors */
//        std::vector<Tensor*> outputs;
//        /** schedule type*/
//        Schedule::Type type = Schedule::Type::SEPARATE;
//
//        /**Command buffer for cache*/
//        CommandBuffer cacheBuffer;
//
//        /**Command buffer for execute*/
//        CommandBuffer executeBuffer;
//        
//        std::map<const Op*, std::shared_ptr<Execution>> executionCache;
//    };
//
static ErrorCode _createExecutions(Schedule::PipelineInfo& mInfo) {
	// mInfo.first 类型为 BackendCache
    // mInfo.first.cache.first 类型为 std::shared_ptr<Backend>,即主动创建的 VulkanBackend
    auto& mBackend = mInfo.first.cache.first;
    // mInfo.first.cache.second 类型为 std::shared_ptr<Backend>,即后备 CPUBackend
    auto& mBackupBackend = mInfo.first.cache.second;
    // mInfo.second 类型为 std::vector<OpCacheInfo>
    for (auto& info : mInfo.second) {
        auto& buffer = info.executeBuffer;
        // MNN_PRINT("before resize, mInfo.second size:%lu, command size:%lu,op type:%s, op name:%s\n", mInfo.second.size(), buffer.command.size(), EnumNameOpType(info.op->type()), info.op->name()->c_str());
        // buffer 类型为 CommandBuffer
        // buffer.command 类型为 std::vector<SharedPtr<Command>>
        for (auto& iterP : buffer.command) {
            auto& iter = *iterP;
            // Create exe
            // Find Cache
            // 先从缓存中找,没有则创建 execution
            bool cached    = false;
            if (nullptr == iter.execution) {
                /** Cache origin execution for fast resize*/
                auto exeIter = info.executionCache.find(iter.op);
                if (exeIter != info.executionCache.end()) {
                    iter.execution = exeIter->second;
                    cached         = true;
                }
            }
            if (nullptr == iter.execution) {
            	// 先使用指定的 Backend(如 CPUBackend )创建
            	// iter 类型为 Command
            	// iter.execution 类型为 std::shared_ptr<Execution> execution;
                iter.execution.reset(mBackend->onCreate(iter.inputs, iter.outputs, iter.op));
            }
            if (nullptr == iter.execution) {
                // Try Backup
                // 没创建成功则使用后备 Backend(如 VulkanBackend )创建
                iter.execution.reset(mBackupBackend->onCreate(iter.inputs, iter.outputs, iter.op));
                if (nullptr == iter.execution) {
                    if (mInfo.first.reportError) {
                        MNN_ERROR("Create execution error : %d\n", iter.op->type());
                    }
                    return NOT_SUPPORT;
                }
            }
            // invalid means memory alloc failed
            if (!iter.execution->valid()) {
                iter.execution = nullptr;
                iter.execution = nullptr;
                return OUT_OF_MEMORY;
            }
            if ((!cached) && iter.buffer == nullptr && (iter.op->type() != OpType_Raster) && (iter.op->type() != OpType_BinaryOp)) {
            	// info 类型为 OpCacheInfo
            	// info.executionCache 类型为 std::map<const Op*, std::shared_ptr<Execution>>
                info.executionCache.insert(std::make_pair(iter.op, iter.execution));
            }
        }
    }
    return NO_ERROR;
}

1.1.1.1.1.1 VulkanBackend::onCreate

    在函数 _createExecutions 中调用 VulkanBackend::onCreate 函数的代码如下:

	iter.execution.reset(mBackend->onCreate(iter.inputs, iter.outputs, iter.op));

    由于 mBackendVulkanBackend(继承 Backend),所以实际调用的是 VulkanBackend::onCreate,其具体实现代码如下:

// source/backend/vulkan/image/backend/VulkanBackend.cpp
Execution* VulkanBackend::onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs,
                                   const MNN::Op* op) {
    auto creator = getCreatorMap();
    auto iter    = creator->find(op->type());
    std::string name = "";
    if (nullptr != op->name()) {
        name = op->name()->str();
    }
    if (iter == creator->end()) {
#ifdef MNN_OP_SUPPORT_LOG
        MNN_PRINT("Vulkan don't support %d, %s: %s\n", op->type(), EnumNameOpType(op->type()),
                name.c_str());
#endif
        return nullptr;
    }
    bool valid = true;
    for (int i=0; i<inputs.size(); ++i) {
        if (!OpCommonUtils::opNeedContent(op, i)) {
            continue;
        }
        auto t = inputs[i];
        auto inputDes = TensorUtils::getDescribe(t);
        if (inputDes->memoryType == Tensor::InsideDescribe::MEMORY_VIRTUAL) {
            for (auto& r : inputDes->regions) {
                if (!_supportImageSize(r.origin)) {
                    valid = false;
                    break;
                }
            }
            if (!valid) {
                break;
            }
        } else {
            if (!_supportImageSize(t)) {
                valid = false;
                break;
            }
        }
    }
    for (auto t : outputs) {
        if (!_supportImageSize(t)) {
            valid = false;
            break;
        }
    }
    if (!valid) {
#ifdef MNN_OP_SUPPORT_LOG
        MNN_ERROR("Vulkan don't support for %s, type=%s, Tensor not support\n", name.c_str(), EnumNameOpType(op->type()));
#endif
        return nullptr;
    }
    // iter->second 类型为 MNN::VulkanBackend::Creator *,即调用具体的创建算子计算实现
    auto originExecution = (VulkanBasicExecution*)iter->second->onCreate(inputs, outputs, op, this);
    if (nullptr == originExecution) {
#ifdef MNN_OP_SUPPORT_LOG
        MNN_ERROR("Vulkan don't support for %s, type=%s, Special case\n", name.c_str(), EnumNameOpType(op->type()));
#endif
        return nullptr;
    }
    if (mDirect) {
        return new VulkanBasicExecutionDirect(std::shared_ptr<VulkanBasicExecution>(originExecution));
    }
    return new VulkanBasicExecutionInDirect(std::shared_ptr<VulkanBasicExecution>(originExecution));
}

1.1.1.1.1.1.1 VulkanBackend::Creator::onCreate

    在函数 VulkanBackend::onCreate 中调用 VulkanBackend::Creator::onCreate 函数的代码如下:

	auto creator = getCreatorMap();
    auto iter    = creator->find(op->type());
    // iter->second 类型为 MNN::VulkanBackend::Creator *,即调用具体的创建算子计算实现
    auto originExecution = (VulkanBasicExecution*)iter->second->onCreate(inputs, outputs, op, this);

    备注:iter->second->onCreate 调用是个多态,实际运行中根据算子类型 opType ,调用不同的子类。其基类为 VulkanBackend::Creator 。

    其中一个实现类为 VulkanConvolutionCreator ,具体实现代码如下:

// source/backend/vulkan/image/execution/VulkanConvolution.cpp
class VulkanConvolutionCreator : public VulkanBackend::Creator {
public:
    virtual VulkanBasicExecution* onCreate(const std::vector<Tensor*>& inputs, const std::vector<Tensor*>& outputs, const MNN::Op* op,
                                Backend* backend) const override {
        auto extra          = static_cast<VulkanBackend *>(backend);
        auto convReal       = op->main_as_Convolution2D();
        auto common         = convReal->common();
        auto outputCount    = common->outputCount();
        const int fh        = common->kernelY();
        const int fw        = common->kernelX();
        int srcCount        = 0;
        const float* source = nullptr;
        const float* biasPtr = nullptr;
        int weightSize = 0;
        std::shared_ptr<ConvolutionCommon::Int8Common> quanWeight;
        if (nullptr != op->main_as_Convolution2D()->quanParameter()) {
            auto quan = op->main_as_Convolution2D()->quanParameter();
            if (1 == quan->type() || 2 == quan->type()) {
                if (quan->has_scaleInt()) {
                    // Don't support IDST-int8 because of error
                    return nullptr;
                }
            }
            quanWeight = ConvolutionCommon::load(op->main_as_Convolution2D(), backend, true);
            srcCount = quanWeight->weightFloat.size() / (outputCount * fh * fw);
            source   = quanWeight->weightFloat.get();
            weightSize = quanWeight->weightFloat.size();
        } else {
            if (nullptr != convReal->weight()) {
                srcCount = convReal->weight()->size() / (outputCount * fh * fw);
                source   = convReal->weight()->data();
                weightSize = convReal->weight()->size();
            } else {
                srcCount = convReal->common()->inputCount();
            }
        }
        if (nullptr != convReal->bias()) {
            biasPtr = convReal->bias()->data();
        }
        if (op->type() == OpType_Convolution) {
            if (inputs.size() > 1) {
                return nullptr;
            }
            auto convCommonParam = op->main_as_Convolution2D()->common();
            const int group      = convCommonParam->group();
            if (1 == group) {
                return VulkanConvolutionImpl::create(extra, common, inputs, outputs[0], source,
                                                     biasPtr, srcCount, outputCount);

            } else {
                return nullptr;
            }
        }
        return new VulkanConvolutionDepthwise(source, weightSize, op, backend);
    }
};

static bool gResistor = []() {
    VulkanBackend::addCreator(OpType_Convolution, new VulkanConvolutionCreator);
    VulkanBackend::addCreator(OpType_ConvolutionDepthwise, new VulkanConvolutionCreator);
    return true;
}();

1.1.1.1.1.1.2 VulkanBasicExecution

    VulkanBasicExecution 为 Vulkan 算子基类,其具体实现如下:

// source/backend/vulkan/image/execution/VulkanBasicExecution.hpp
class VulkanBasicExecution {
public:
    VulkanBasicExecution(Backend *bn) : mBackend(bn) {
        //Do nothing
    }
    virtual ~VulkanBasicExecution() = default;

    virtual ErrorCode onEncode(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs,
                               const VulkanCommandPool::Buffer *cmdBuffer) = 0;

    Backend* backend() {
        return mBackend;
    }
private:
    Backend* mBackend;
};

1.1.1.1.1.1.3 Vulkan 算子执行实例注册

    VulkanBackend::onCreate 函数中有个 gCreator 成员,其缓存了所有的 Vulkan 算子执行创建实例 VulkanBackend::Creator,其初始化分布在各个 VulkanBackend::Creator 实例代码中,采用静态初始化执行的方式进行注册。

// source/backend/vulkan/image/execution/VulkanConvolution.cpp
static bool gResistor = []() {
    VulkanBackend::addCreator(OpType_Convolution, new VulkanConvolutionCreator);
    VulkanBackend::addCreator(OpType_ConvolutionDepthwise, new VulkanConvolutionCreator);
    return true;
}();

    VulkanBackend::addCreator 实现如下:

// source/backend/vulkan/image/backend/VulkanBackend.cpp
bool VulkanBackend::addCreator(OpType t, Creator* c) {
    auto allKind = getCreatorMap();
    allKind->insert(std::make_pair(t, c));
    return true;
}

static std::map<OpType, VulkanBackend::Creator*>* gCreator = nullptr;

// Creator
static inline std::map<OpType, VulkanBackend::Creator*>* getCreatorMap() {
    if (nullptr == gCreator) {
        gCreator = new std::map<OpType, VulkanBackend::Creator*>();
    }
    return gCreator;
}

添加Vulkan实现

  1. 添加Shader
    source/backend/vulkan/execution/glsl目录下添加具体的shader(*.comp)。若输入内存布局为NC4HW4,则按image实现,否则采用buffer实现。可以参考目录下已有实现。然后,执行makeshader.py脚本编译Shader。

  2. 实现类声明
    在目录source/backend/vulkan/execution/下添加VulkanMyCustomOp.hppVulkanMyCustomOp.cpp

class VulkanMyCustomOp : public VulkanBasicExecution {
public:
    VulkanMyCustomOp(const Op* op, Backend* bn);
    virtual ~VulkanMyCustomOp();
    ErrorCode onEncode(const std::vector<Tensor*>& inputs, 
                       const std::vector<Tensor*>& outputs,
                       const VulkanCommandPool::Buffer* cmdBuffer) override;
private:
    // GPU Shader所需的参数
    std::shared_ptr<VulkanBuffer> mConstBuffer;
    // Pipeline
    const VulkanPipeline* mPipeline;
    // Layout Descriptor Set
    std::shared_ptr<VulkanPipeline::DescriptorSet> mDescriptorSet;
};
  1. 实现
    实现函数onEncode,首先需要做内存布局检查:若为NC4HW4,则Shader用image实现,否则用buffer。执行完毕返回NO_ERROR。

  2. 注册实现类

class VulkanMyCustomOpCreator : public VulkanBackend::Creator {
public:
    virtual Execution* onCreate(const std::vector<Tensor*>& inputs, 
                                const MNN::Op* op,
                                Backend* backend) const override {
        return new VulkanMyCustomOp(op, backend);
    }
};
static bool gResistor = []() {
    VulkanBackend::addCreator(OpType_MyCustomOp, new VulkanMyCustomOpCreator);
    return true;
}();

添加Metal实现

  1. 添加Shader
    source/backend/Metal目录下添加MetalMyCustomOp.metal,并添加进Xcode工程。metal可以参考目录下已有实现。

  2. 实现类声明
    source/backend/Metal目录下添加MetalMyCustomOp.hppMetalMyCustomOp.cpp,并添加进Xcode工程:

class MetalMyCustomOp : public Execution {
public:
    virtual ErrorCode onResize(const std::vector<Tensor *> &inputs, 
                               const std::vector<Tensor *> &outputs) override;
    virtual ErrorCode onExecute(const std::vector<Tensor *> &inputs, 
                                const std::vector<Tensor *> &outputs) override;
};
  1. 实现onResizeonExecute
    不同于CPU Tensor将数据存储在host指针中,Metal数据指针存放在deviceId中,deviceId上存储的是id<MTLBuffer>
auto buffer = (__bridge id<MTLBuffer>)(void *)tensor->deviceId();

Metal Op的特定参数等可以通过id<MTLBuffer>存储。buffer数据类型可以与tensor不同,buffer甚至可以混合多种数据类型,只需保证创建时指定了正确的长度即可。例如:

auto buffer = [context newDeviceBuffer:2 * sizeof(int) + 2 * sizeof(__fp16) access:CPUWriteOnly];
((__fp16 *)buffer.contents)[0] = mAlpha / mLocalSize;  // alpha
((__fp16 *)buffer.contents)[1] = mBeta;                // beta
((int *)buffer.contents)[1] = mLocalSize;              // local size
((int *)buffer.contents)[2] = inputs[0]->channel();    // channel

在创建buffer时,需要指定访问控制权限。目前共有三种权限:

  • CPUReadWrite,数据在CPU/GPU间共享存储,一般用于device buffer;
  • CPUWriteOnly,数据通过CPU写入后不再读取,一般用于参数buffer;
  • CPUTransparent,数据只在GPU中,一般用于heap buffer;

MNNMetalContext在创建buffer上,有两套相近的接口,区别只在数据的生命周期上:

  • device占用的内存在单次推理过程中都不会被复用;
  • 而heap占用的内存,在调用-[MNNMetalContext releaseHeapBuffer:]之后,可以被其他Op复用;

一般而言,heap只会与CPUTransparent一起使用。heap实际只在iOS 10+上有效,iOS 9-上会回退到device上。

使用Metal时,如非特殊情况,禁止自行创建device和library。加载library、编译function都是耗时行为,MNNMetalContext上做了必要的缓存优化。通过context执行Metal的示例如下:

auto context   = (__bridge MNNMetalContext *)backend->context();
auto kernel    = /* metal kernel name NSString */;
auto encoder   = [context encoder];
auto bandwidth = [context load:kernel encoder:encoder];
/* encoder set buffer(s)/sampler(s) */
[context dispatchEncoder:encoder 
			     threads:{x, y, z}
      maxThreadsPerGroup:maxThreadsPerThreadgroup]; // recommended way to dispatch
[encoder endEncoding];
  1. 注册实现类
class MetalMyCustomOpCreator : public MetalBackend::Creator {
public:
    virtual Execution *onCreate(const std::vector<Tensor *> &inputs, 
                                const MNN::Op *op, Backend *backend) const {
        return new MetalMyCustomOp(backend);
    }
};
REGISTER_METAL_OP_CREATOR(MetalMyCustomOpCreator, OpType_MyCustomOp);

添加注册代码后,重新运行一下 CMake ,自动变更注册文件

添加OpenCL实现

  1. 添加Kernel
    source/backend/opencl/execution/cl目录添加具体的kernel(*.cl)。目前feature map均使用image2d实现。可以参考目录下已有实现。然后执行opencl_codegen.py来生成kernel映射。

  2. 实现类声明
    在目录source/backend/opencl/execution/下添加MyCustomOp.hMyCustomOp.cpp

template <typename T>
class MyCustomOp : public Execution {
public:
    virtual ErrorCode onResize(const std::vector<Tensor *> &inputs, 
                               const std::vector<Tensor *> &outputs) override;
    virtual ErrorCode onExecute(const std::vector<Tensor *> &inputs, 
                                const std::vector<Tensor *> &outputs) override;
};
  1. 实现
    实现函数onResize(可选)、onExecute。执行完毕返回NO_ERROR。

  2. 注册实现类

OpenCLCreatorRegister<TypedCreator<MyCustomOp<cl_data_t>>> __my_custom_op(OpType_MyCustomOp);

添加OpenGL实现

  1. 添加Shader
    source/backend/opengl/glsl下添加具体的shader(*.glsl),不用加文件头,feature map 均采用image3d表示。可以参考目录下已有实现。而后,在source/backend/opengl目录下执行makeshader.py

  2. 添加Executor
    source/backend/opengl/execution/目录下添加GLMyCustomOp.hGLMyCustomOp.cpp

class GLMyCustomOp : public Execution {
public:
    GLMyCustomOp(const std::vector<Tensor *> &inputs, const Op *op, Backend *bn);
    virtual ~GLMyCustomOp();
    virtual ErrorCode onExecute(const std::vector<Tensor *> &inputs, 
                                const std::vector<Tensor *> &outputs) override;
    virtual ErrorCode onResize(const std::vector<Tensor *> &inputs, 
                               const std::vector<Tensor *> &outputs) override;

private:
    std::shared_ptr<GLProgram> mProgram;
};
  1. 实现
    实现函数onResize(可选)、onExecute。执行完毕返回NO_ERROR。

  2. 注册实现类-

GLCreatorRegister<TypedCreator<GLMyCustomOp>> __my_custom_op(OpType_MyCustomOp);

1.1.1.1.1.1.4 VulkanBasicExecutionDirect

// source/backend/vulkan/image/execution/VulkanBasicExecution.hpp
class VulkanBasicExecutionDirect : public Execution {
public:
    VulkanBasicExecutionDirect(std::shared_ptr<VulkanBasicExecution> encoder);
    virtual ~ VulkanBasicExecutionDirect() = default;
    virtual ErrorCode onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override;
    virtual ErrorCode onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override;

private:
    std::shared_ptr<VulkanBasicExecution> mEncoder;
    std::shared_ptr<VulkanCommandPool::Buffer> mCmdBuffer;
};

1.1.1.1.1.1.5 VulkanBasicExecutionDirect::VulkanBasicExecutionDirect

// source/backend/vulkan/image/execution/VulkanBasicExecution.cpp
VulkanBasicExecutionDirect::VulkanBasicExecutionDirect(std::shared_ptr<VulkanBasicExecution> encoder) : Execution(encoder->backend()) {
    mEncoder = encoder;
    auto extra = static_cast<VulkanBackend *>(encoder->backend());
    mCmdBuffer.reset(const_cast<VulkanCommandPool::Buffer *>(extra->getPool().allocBuffer()));
}

1.1.1.1.1.1.6 VulkanBasicExecutionInDirect

// source/backend/vulkan/image/execution/VulkanBasicExecution.hpp
class VulkanBasicExecutionInDirect : public Execution {
public:
    VulkanBasicExecutionInDirect(std::shared_ptr<VulkanBasicExecution> encoder);
    virtual ~ VulkanBasicExecutionInDirect() = default;
    virtual ErrorCode onExecute(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override {
        return NO_ERROR;
    }
    virtual ErrorCode onResize(const std::vector<Tensor *> &inputs, const std::vector<Tensor *> &outputs) override;
    
private:
    std::shared_ptr<VulkanBasicExecution> mEncoder;
};

1.1.1.1.1.2 CPUBackend::onCreate

    在函数 _createExecutions 中先调用 VulkanBackend::onCreate 创建算子执行器,没创建成功则采用后备 CPUBackend::onCreate 进行创建。

            if (nullptr == iter.execution) {
            	// 先使用指定的 Backend(如 CPUBackend )创建
            	// iter 类型为 Command
            	// iter.execution 类型为 std::shared_ptr<Execution> execution;
                iter.execution.reset(mBackend->onCreate(iter.inputs, iter.outputs, iter.op));
            }
            if (nullptr == iter.execution) {
                // Try Backup
                // 没创建成功则使用后备 Backend(如 VulkanBackend )创建
                iter.execution.reset(mBackupBackend->onCreate(iter.inputs, iter.outputs, iter.op));
                if (nullptr == iter.execution) {
                    if (mInfo.first.reportError) {
                        MNN_ERROR("Create execution error : %d\n", iter.op->type());
                    }
                    return NOT_SUPPORT;
                }
            }

    关于 CPUBackend::onCreate 的分析见传送门。

1.1.1.1.2 Backend::onResizeBegin

    在函数 Pipeline::allocMemory 中调用 VulkanBackend::onResizeBeginCPUBackend::onResizeBegin 函数的代码如下:

    mBackend->onResizeBegin();
    mBackupBackend->onResizeBegin();

    onResizeBegin 函数是个虚函数,由于 mBackendVulkanBackend(继承 Backend) ,所以实际调用的是 VulkanBackend::onResizeBegin,其具体实现代码如下:

// source/backend/vulkan/image/backend/VulkanBackend.cpp
void VulkanBackend::onResizeBegin() {
    mInitBuffer->begin(0);
    if (!mDirect) {
        mCmdBuffer->begin(0);
    }
}

    mBackupBackendCPUBackend(继承 Backend),其具体实现见传送门。

1.1.1.1.3 Execution::onResize

    在函数 GeometryComputerUtils::shapeComputeAndGeometryTransform 中调用 Execution::onResize 函数的代码如下:

                backupBackend->onResizeBegin();
                auto code = exe->onResize(c.inputs, c.outputs);
                // ...
                code = backupBackend->onResizeEnd();
                // ...
                code = exe->onExecute(c.inputs, c.outputs);
                // ...

    onResize 函数是个虚函数, exe 创建逻辑见 CPUBackend::onCreate ,exe->onResize 调用是个多态,其基类为 Execution,我们选择一个实例 CPULoop 进行分析,其具体实现代码如下:

// source/backend/cpu/CPURaster.cpp
void VulkanBackend::onResizeBegin() {
    mInitBuffer->begin(0);
    if (!mDirect) {
        mCmdBuffer->begin(0);
    }
}

1.1.1.1.4 Backend::onResizeEnd

    在函数 Pipeline::allocMemory 中调用 VulkanBackend::onResizeEndCPUBackend::onResizeEnd 函数的代码如下:

    auto code = mBackend->onResizeEnd();
    if (code != NO_ERROR) {
        return code;
    }
    code = mBackupBackend->onResizeEnd();

    onResizeEnd 函数是个虚函数,由于 mBackendVulkanBackend(继承 Backend) ,所以实际调用的是 VulkanBackend::onResizeEnd,其具体实现代码如下:

// source/backend/vulkan/image/backend/VulkanBackend.cpp

    mBackupBackendCPUBackend(继承 Backend),其具体实现见传送门。

1.1.1.1.5 Execution::onExecute

    在函数 GeometryComputerUtils::shapeComputeAndGeometryTransform 中调用 Execution::onExecute 函数的代码如下:

                backupBackend->onResizeBegin();
                auto code = exe->onResize(c.inputs, c.outputs);
                // ...
                code = backupBackend->onResizeEnd();
                // ...
                code = exe->onExecute(c.inputs, c.outputs);
                // ...

    onExecute 函数是个虚函数, exe 创建逻辑见 CPUBackend::onCreate ,exe->onExecute 调用是个多态,其基类为 Execution,我们选择一个实例 CPULoop 进行分析,其具体实现代码如下:

// source/backend/cpu/CPURaster.cpp
class CPULoop : public Execution {
    virtual ErrorCode onExecute(const std::vector<Tensor *> &originInputs, const std::vector<Tensor *> &originOutputs) override {
        auto cpubackend = static_cast<CPUBackend*>(backend());
        auto precision = cpubackend->precisionMode();
        auto threadNumber = cpubackend->threadNumber();
        if (mLoop->initCommand() != nullptr) {
            for (int i=0; i<mLoop->initCommand()->size(); ++i) {
                auto cmd = mLoop->initCommand()->GetAs<RegionCommand>(i);
                if (cmd->op() == nullptr) {
                    auto output = mStack[cmd->indexes()->data()[0]];
                    ::memset(output->host<void>(), 0, cpubackend->getTensorSize(output) * cpubackend->functions()->bytes);
                } else {
                    Tensor::InsideDescribe::Region reg;
                    auto srcView = cmd->view()->GetAs<View>(1);
                    auto dstView = cmd->view()->GetAs<View>(0);
                    ::memcpy(reg.size, cmd->size()->data(), 3 * sizeof(int32_t));
                    ::memcpy(reg.src.stride, srcView->stride()->data(), 3 * sizeof(int32_t));
                    ::memcpy(reg.dst.stride, dstView->stride()->data(), 3 * sizeof(int32_t));
                    auto input = mStack[cmd->indexes()->data()[1]];
                    auto inputSize = input->elementSize();
                    auto output = mStack[cmd->indexes()->data()[0]];
                    auto bytes = input->getType().bytes();
                    if (halide_type_float == input->getType().code) {
                        bytes = cpubackend->functions()->bytes;
                    }
                    _blit(reg, bytes, input->host<uint8_t>(), output->host<uint8_t>());
                }

            }
        }
        if (1 == mLoop->commands()->size()) {
            auto cmd = mLoop->commands()->GetAs<RegionCommand>(0);
            auto op = cmd->op();
            if (OpType_UnaryOp == op->type() && nullptr == op->main() && cmd->fuse() < 0) {
                // For Gather / Single Unary
                auto index0 = cmd->iterIndexes()->data()[0];
                auto index1 = cmd->iterIndexes()->data()[1];
                int32_t iter = 0;
                int32_t* iter0 = &iter;
                int32_t* iter1 = &iter;
                int32_t iter0Stride = 0;
                int32_t iter1Stride = 0;
                if (index0 >= 0) {
                    iter0 = originInputs[index0]->host<int32_t>();
                    iter0Stride = 1;
                }
                if (index1 >= 0) {
                    iter1 = originInputs[index1]->host<int32_t>();
                    iter1Stride = 1;
                }
                Tensor::InsideDescribe::Region reg;
                auto srcView = cmd->view()->GetAs<View>(1);
                auto dstView = cmd->view()->GetAs<View>(0);
                ::memcpy(reg.size, cmd->size()->data(), 3 * sizeof(int32_t));
                ::memcpy(reg.src.stride, srcView->stride()->data(), 3 * sizeof(int32_t));
                ::memcpy(reg.dst.stride, dstView->stride()->data(), 3 * sizeof(int32_t));
                auto input = mStack[cmd->indexes()->data()[1]];
                auto inputSize = input->elementSize();
                auto output = mStack[cmd->indexes()->data()[0]];
                auto bytes = input->getType().bytes();
                if (halide_type_float == input->getType().code) {
                    bytes = static_cast<CPUBackend*>(backend())->functions()->bytes;
                }
                auto step0 = cmd->steps()->data()[0];
                auto step1 = cmd->steps()->data()[1];
                auto loopNumber = mLoop->loopNumber();
                for (; iter<loopNumber; ++iter) {
                    auto srcIter = *(iter1 + iter1Stride * iter);
                    auto dstIter = *(iter0 + iter0Stride * iter);
                    auto srcOffset = srcIter * step1 + srcView->offset();
                    auto dstOffset = dstIter * step0 + dstView->offset();
                    if (dstOffset >= 0) {
                        if (srcOffset >= 0 && srcOffset < inputSize) {
                            _blit(reg, bytes, input->host<uint8_t>() + bytes * srcOffset, output->host<uint8_t>() + bytes * dstOffset);
                        } else {
                            _zero(reg, bytes, output->host<uint8_t>() + bytes * dstOffset);
                        }
                    }
                }
                return NO_ERROR;
            }
        }
        auto bytes = static_cast<CPUBackend*>(backend())->functions()->bytes;
        auto func = [&](int iter, int tId) {
            int fuseOutputStride[3];
            const int32_t* outputStride = nullptr;
            auto fuseBuffer = mFuseBuffer + mMaxFuseBufferSize * tId;
            for (int index=0; index<mLoop->commands()->size(); ++index) {
                auto cmd = mLoop->commands()->GetAs<RegionCommand>(index);
                auto blit = _selectUnitProc(bytes, cmd->view()->GetAs<View>(1)->stride()->data()[2], 1);
                auto op = cmd->op();
                int iterIndexsize = cmd->iterIndexes()->size();
                
                if (cmd->fuse() >= 0) {
                    outputStride = fuseOutputStride;
                    auto cmdSize = cmd->size()->data();
                    fuseOutputStride[0] = cmdSize[1] * cmdSize[2];
                    fuseOutputStride[1] = cmdSize[2];
                    fuseOutputStride[2] = 1;
                } else {
                    // Loop Op's command's first index must be output
                    outputStride = cmd->view()->GetAs<View>(0)->stride()->data();
                }
                halide_type_t inputType;
                for (int v=0; v<iterIndexsize; ++v) {
                    auto tensorIndex = cmd->indexes()->data()[v];
                    auto tensor = mStack[tensorIndex];
                    auto iterIndex = cmd->iterIndexes()->data()[v];
                    auto offset = iter;
                    if (1 == v) {
                        inputType = tensor->getType();
                    }
                    if (iterIndex >= 0) {
                        offset = mStack[iterIndex]->host<int32_t>()[iter];
                    }
                    auto view = cmd->view()->GetAs<View>(v);
                    offset = offset * cmd->steps()->data()[v] + view->offset();
                    mContainer[tId].stackPtr[tensorIndex] = tensor->host<uint8_t>() + offset * bytes;
                    MNN_ASSERT(nullptr != tensor->host<uint8_t>());
                }
                auto dstOrigin = (uint8_t*)mContainer[tId].stackPtr[cmd->indexes()->data()[0]];
                auto dst = dstOrigin;
                if (cmd->fuse() >= 0) {
                    dst = fuseBuffer.ptr();
                }
                do {
                    if (OpType_UnaryOp == op->type()) {
                        auto src = (uint8_t*)mContainer[tId].stackPtr[cmd->indexes()->data()[1]];
                        if (nullptr == op->main()) {
                            // Copy
                            Tensor::InsideDescribe::Region reg;
                            auto srcView = cmd->view()->GetAs<View>(1);
                            auto dstView = cmd->view()->GetAs<View>(0);
                            ::memcpy(reg.size, cmd->size()->data(), 3 * sizeof(int32_t));
                            ::memcpy(reg.src.stride, srcView->stride()->data(), 3 * sizeof(int32_t));
                            ::memcpy(reg.dst.stride, outputStride, 3 * sizeof(int32_t));
                            auto step0 = cmd->steps()->data()[0];
                            auto step1 = cmd->steps()->data()[1];
                            auto loopNumber = mLoop->loopNumber();
                            _blit(reg, bytes, (const uint8_t*)src, (uint8_t*)dst);
                            break;
                        }
                        auto proc = static_cast<CPUBackend*>(backend())->functions()->MNNSelectUnaryFunctionForFloat(op->main_as_UnaryOp()->opType(), static_cast<CPUBackend*>(backend())->precisionMode());
                        auto lastS = cmd->size()->data()[2];
                        if (lastS == 1 || cmd->view()->GetAs<View>(1)->stride()->data()[2] == 1) {
                            for (int z=0; z<cmd->size()->data()[0]; ++z) {
                                auto srcZ = src + z * cmd->view()->GetAs<View>(1)->stride()->data()[0] * bytes;
                                auto dstZ = dst + z * outputStride[0] * bytes;
                                for (int y=0; y<cmd->size()->data()[1]; ++y) {
                                    auto srcY = srcZ + y * cmd->view()->GetAs<View>(1)->stride()->data()[1] * bytes;
                                    auto dstY = dstZ + y * outputStride[1] * bytes;
                                    proc(dstY, srcY, lastS);
                                }
                            }
                        } else {
                            // Blit to cache
                            auto srcCache = mCacheBuffer.ptr() + mMaxCacheSize * tId;
                            for (int z=0; z<cmd->size()->data()[0]; ++z) {
                                auto srcZ = src + z * cmd->view()->GetAs<View>(1)->stride()->data()[0] * bytes;
                                auto dstZ = dst + z * outputStride[0] * bytes;
                                for (int y=0; y<cmd->size()->data()[1]; ++y) {
                                    auto srcY = srcZ + y * cmd->view()->GetAs<View>(1)->stride()->data()[1] * bytes;
                                    auto dstY = dstZ + y * outputStride[1] * bytes;
                                    blit(srcCache, srcY, lastS, cmd->view()->GetAs<View>(1)->stride()->data()[2], 1);
                                    proc(dstY, srcCache, lastS);
                                }
                            }
                        }
                        continue;
                    }
                    if (OpType_MatMul == op->type()) {
                        // TODO: Don't support fuse for matmul currently
                        const float* APtr = nullptr;
                        const float* BPtr = nullptr;
                        const float* BiasPtr = nullptr;
                        float* CPtr = (float*)dst;
                        auto exe = static_cast<CPUMatMul*>(mContainer[tId].exe[index].get());
                        APtr = (const float*)mContainer[tId].stackPtr[cmd->indexes()->data()[1]];
                        BPtr = (const float*)mContainer[tId].stackPtr[cmd->indexes()->data()[2]];
                        if (iterIndexsize > 3) {
                            BiasPtr = (const float*)mContainer[tId].stackPtr[cmd->indexes()->data()[3]];
                        }
                        exe->execute(APtr, BPtr, CPtr, BiasPtr);
                        break;
                    }
                    if (OpType_BinaryOp == op->type()) {
                        auto src0 = mContainer[tId].stackPtr[cmd->indexes()->data()[1]];
                        MNNBinaryExecute proc;
                        if (inputType.code == halide_type_float) {
                            proc = static_cast<CPUBackend*>(backend())->functions()->MNNSelectBinaryFunctionForFloat(op->main_as_BinaryOp()->opType());
                        } else {
                            MNN_ASSERT(inputType.code == halide_type_int);
                            proc = CPUBinary::selectForInt(op->main_as_BinaryOp()->opType());
                        }
                        auto lastS = cmd->size()->data()[2];
                        auto stride0 = outputStride;
                        auto stride1 = cmd->view()->GetAs<View>(1)->stride()->data();
                        MNN_ASSERT(stride0[2] == 1);
                        auto src1 = mContainer[tId].stackPtr[cmd->indexes()->data()[2]];
                        auto stride2 = cmd->view()->GetAs<View>(2)->stride()->data();
                        auto blit1   = _selectUnitProc(bytes, stride1[2], 1);
                        auto blit2   = _selectUnitProc(bytes, stride2[2], 1);
                        if (cmd->size()->data()[2] == 1 || (stride1[2] == 1 && stride2[2] == 1)) {
                            for (int z=0; z<cmd->size()->data()[0]; ++z) {
                                auto src0Z = src0 + z * stride1[0] * bytes;
                                auto src1Z = src1 + z * stride2[0] * bytes;
                                auto dstZ = dst + z * stride0[0] * bytes;
                                for (int y=0; y<cmd->size()->data()[1]; ++y) {
                                    auto src0Y = src0Z + y * stride1[1] * bytes;
                                    auto src1Y = src1Z + y * stride2[1] * bytes;
                                    auto dstY = dstZ + y * stride0[1] * bytes;
                                    proc(dstY, src0Y, src1Y, cmd->size()->data()[2], -1);
                                }
                            }
                        } else {
                            auto cache0 = mCacheBuffer.ptr() + mMaxCacheSize * tId;
                            auto cache1 = cache0 + cmd->size()->data()[2] * bytes;
                            for (int z=0; z<cmd->size()->data()[0]; ++z) {
                                auto src0Z = src0 + z * stride1[0] * bytes;
                                auto src1Z = src1 + z * stride2[0] * bytes;
                                auto dstZ = dst + z * stride0[0] * bytes;
                                for (int y=0; y<cmd->size()->data()[1]; ++y) {
                                    auto src0Y = src0Z + y * stride1[1] * bytes;
                                    auto src1Y = src1Z + y * stride2[1] * bytes;
                                    auto dstY = dstZ + y * stride0[1] * bytes;
                                    blit1(cache0, src0Y, cmd->size()->data()[2], stride1[2], 1);
                                    blit2(cache1, src1Y, cmd->size()->data()[2], stride2[2], 1);
                                    proc(dstY, cache0, cache1, cmd->size()->data()[2], -1);
                                }
                            }
                        }
                        break;
                    }
                } while(false);
                if (dst != dstOrigin) {
                    MNN_ASSERT(bytes == 4);
                    // Currently only support add and float32
                    auto dstStride = cmd->view()->GetAs<View>(0)->stride()->data();
                    auto srcF = (const float*)dst;
                    auto dstF = (float*)dstOrigin;
                    int sizeZ = cmd->size()->data()[0];
                    int sizeY = cmd->size()->data()[1];
                    int sizeX = cmd->size()->data()[2];
                    if (cmd->op()->type() == OpType_MatMul) {
                        auto proc = static_cast<CPUBackend*>(backend())->functions()->MNNSelectBinaryFunctionForFloat(cmd->fuse());
                        proc(dstF, dstF, srcF, sizeZ * sizeX, -1);
                        continue;
                    }
                    switch (cmd->fuse()) {
                        case BinaryOpOperation_ADD:
                            for (int z=0; z<sizeZ; ++z) {
                                auto srcZ = srcF + z * outputStride[0];
                                auto dstZ = dstF + z * dstStride[0];
                                for (int y=0; y<sizeY; ++y) {
                                    auto srcY = srcZ + y * outputStride[1];
                                    auto dstY = dstZ + y * dstStride[1];
                                    for (int x=0; x<sizeX; ++x) {
                                        auto dstOffset = x * dstStride[2];
                                        dstY[dstOffset] = dstY[dstOffset] + srcY[x];
                                    }
                                }
                            }
                            break;
                        case BinaryOpOperation_MUL:
                            for (int z=0; z<sizeZ; ++z) {
                                auto srcZ = srcF + z * dstStride[0];
                                auto dstZ = dstF + z * outputStride[0];
                                for (int y=0; y<sizeY; ++y) {
                                    auto srcY = srcZ + z * dstStride[1];
                                    auto dstY = dstZ + z * outputStride[1];
                                    for (int x=0; x<sizeX; ++x) {
                                        auto dstOffset = x * dstStride[2];
                                        dstY[dstOffset] = dstY[dstOffset] * srcY[x];
                                    }
                                }
                            }
                            break;
                        case BinaryOpOperation_SUB:
                            for (int z=0; z<sizeZ; ++z) {
                                auto srcZ = srcF + z * dstStride[0];
                                auto dstZ = dstF + z * outputStride[0];
                                for (int y=0; y<sizeY; ++y) {
                                    auto srcY = srcZ + z * dstStride[1];
                                    auto dstY = dstZ + z * outputStride[1];
                                    for (int x=0; x<sizeX; ++x) {
                                        auto dstOffset = x * dstStride[2];
                                        auto D = dstY[dstOffset];
                                        auto S = srcY[x];
                                        dstY[dstOffset] = D - S;
                                    }
                                }
                            }
                            break;
                        default:
                            break;
                    }
                }
            }
        };
        if (mLoop->parallel()) {
            MNN_CONCURRENCY_BEGIN(tId, threadNumber) {
                for (int iter=tId; iter < mLoop->loopNumber(); iter+=threadNumber) {
                    func(iter, tId);
                }
            }
            MNN_CONCURRENCY_END();
        } else {
            for (int iter=0; iter < mLoop->loopNumber(); ++iter) {
                func(iter, 0);
            }
        }
        return NO_ERROR;
    }
}

   

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1533899.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

小米手机蓝牙耳机无声音AACSBC编码故障解决方案

已知环境中蓝牙耳机无声音原因 手机环境&#xff1a;Root Magisk 26.4 最新 27.0 有很多 bug 刷入其他模块会导致永久丢失Root 权限 起初我以为是将手机根目录文件变动导致&#xff0c;最终确定是由于以下模块 magisk-overlayfs3.2-release.zip 作用是解锁 System 分区可读&a…

年度水下蓝牙耳机十大名牌汇集:热销榜TOP游泳耳机揭秘!

近年来&#xff0c;随着运动健身的普及和科技的发展&#xff0c;水下蓝牙耳机逐渐成为游泳爱好者的必备装备。然而市场上各类品牌、型号繁多&#xff0c;如何选择一款适合自己且性价比高的水下蓝牙耳机呢&#xff1f; 为此&#xff0c;我们专门对市面上热销的十大水下蓝牙耳机进…

Halcon 路标牌识别

文章目录 gray_closing_shape 使用选定的掩码执行灰度值关闭create_planar_uncalib_deformable_model 为未校准的透视匹配创建一个可变形的模型get_deformable_model_params 返回可变形模型的参数find_planar_uncalib_deformable_model 在图像中寻找平面投影不变变形模型的最佳…

气压传感器BMP180的简单应用

文章目录 一、BMP1801.介绍2.主要特点&#xff1a;3. 典型应用&#xff1a;4. 原理图5. 典型应用电路6. 测量流程7. 工作模式 二、软件1.初始化2.获取原始温度3.获取真实温度4.获取原始气压5.获取真实气压6.海拔高度的换算 三、总结 一、BMP180 1.介绍 BMP180是一款高精度、小…

【考研数学】全年复习懒人包+资料分享

题主要真是能把这两样做透了&#xff0c;别说90&#xff0c;120都不是问题呀&#xff01;那么我们就先来说说你如何能把这1800做透吧。这可是人称考研数学路上最厚的一本习题册了。经常有人是做到一半就被劝退的&#xff01;假设你是挑题出来做&#xff0c;那也行&#xff0c;不…

ThreaTrace复现记录

1. 环境配置 服务器环境 需要10.2的cuda版本 conda环境 包的版本&#xff1a; python 3.6.13 pytorch 1.9.1 torch-cluster 1.5.9 torch-scatter 2.0.9 torch-sparse 0.6.12 torch-spline-conv 1.2.1 torch-geometric 1.4.3 环境bug 这里环境搭建好以后&#xff0c;就可以正…

ssm基于Vue.js的在线购物系统的设计与实现论文

摘 要 随着科学技术的飞速发展&#xff0c;各行各业都在努力与现代先进技术接轨&#xff0c;通过科技手段提高自身的优势&#xff1b;对于在线购物系统当然也不能排除在外&#xff0c;随着网络技术的不断成熟&#xff0c;带动了在线购物系统&#xff0c;它彻底改变了过去传统的…

【数据结构】——线性表(顺序表加链表),万字解读(加链表oj详解)

前言 由于之前存在过对两者的区别考虑&#xff0c;所以把他们放在一起来说&#xff0c;更加容易区别和理解 对于有关线性表的概念这里就不展示了&#xff0c;这里主要是介绍线性表里面的这两个结构的知识点 一.顺序表 1.顺序表介绍 顺序表的存储结构和逻辑结构都是相邻的&a…

【前端寻宝之路】学习和总结JavaScript的书写形式

&#x1f308;个人主页: Aileen_0v0 &#x1f525;热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法|MySQL| ​&#x1f4ab;个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-oO1UdfWcWZUMkIDr {font-family:"trebuchet ms",verdana,arial,sans-serif;f…

【C语言进阶篇】自定义类型:联合体和枚举

【C语言进阶篇】自定义结构体类型&#xff1a;联合体和枚举 &#x1f308;个人主页&#xff1a;开敲 &#x1f525;所属专栏&#xff1a;C语言 &#x1f33c;文章目录&#x1f33c; 1. 联合体 1.1 联合体类型的声明 1.2 联合体的特点 1.3 联合体大小的计算 2. 枚举 2.1 枚举…

2.5、栅格布局(GridRow/GridCol)

概述 栅格布局是一种通用的辅助定位工具,对移动设备的界面设计有较好的借鉴作用。主要优势包括: 提供可循的规律:栅格布局可以为布局提供规律性的结构,解决多尺寸多设备的动态布局问题。通过将页面划分为等宽的列数和行数,可以方便地对页面元素进行定位和排版。 统一的定…

设计模式 模板方法模式

01.如果接到一个任务&#xff0c;要求设计不同型号的悍马车 02.设计一个悍马车的抽象类&#xff08;模具&#xff0c;车模&#xff09; public abstract class HummerModel {/** 首先&#xff0c;这个模型要能够被发动起来&#xff0c;别管是手摇发动&#xff0c;还是电力发动…

AI训练,为什么需要GPU?

随着人工智能热潮&#xff0c;GPU成为了AI大模型训练平台的基石&#xff0c;决定了算力能力。为什么GPU能力压CPU&#xff0c;成为炙手可热的主角呢&#xff1f;首先我们要先了解一下GPU的分类。提到分类&#xff0c;就得提及到芯片。 半导体芯片分为数字芯片和模拟芯片。其中&…

浅谈亚信安慧AntDB-M条件下推

概述 “下推”是数据库管理系统优化查询性能的一种思路&#xff0c;集中式数据库支持谓词下推和投影下推&#xff0c;通过将Filter&#xff08;过滤&#xff09;和Project&#xff08;映射&#xff09;算子在算子数中向下移动&#xff0c;提前对行/列进行裁剪&#xff0c;减少…

从嵌套事务的日志看MyBatis的sqlSession生命周期

service层业务代码 Override public void test(){QueryWrapper<StoreRebateCalculateLog> queryWrapper;queryWrapper new QueryWrapper<>();queryWrapper.eq("delete_flag", 0);//执行查询A,以非事务方式执行List<StoreRebateCalculateLog> sto…

代码学习第24天----回溯算法

随想录日记part24 t i m e &#xff1a; time&#xff1a; time&#xff1a; 2024.03.10 主要内容&#xff1a;回溯算法在代码学习中尤其重要&#xff0c;所以今天继续加深对其的理解&#xff1a;1&#xff1a;递增子序列 &#xff1b;2.全排列 &#xff1b;3.全排列II 491.递…

Android:adb命令

执行adb命令的窗口如下 Mac或Linux系统里的终端窗口&#xff1b; window系统运行输入cmd打开的指令窗口&#xff1b; Android Studio 里控制下面的Terminal窗口 1. 查看已链接的设备和模拟器 adb devices -l 2. 查看Android内核版本号 adb shell getprop ro.build.version.re…

近期TRO案件盘点,外观专利又双叒叕成维权高发地

近期&#xff0c;多个权利人进行外观专利维权&#xff0c;众多国内卖家被告&#xff0c;建议卖家自查。 案例一&#xff1a;尿布收纳袋——商标外观专利版权 案例关于这款尿布收纳袋&#xff0c;涉及商标、外观专利和版权。 &#xff08;图源网络&#xff0c;侵删&#xff09…

HarmonyOS NEXT应用开发之跨文件样式复用和组件复用

介绍 本示例主要介绍了跨文件样式复用和组件复用的场景。在应用开发中&#xff0c;我们通常需要使用相同功能和样式的ArkUI组件&#xff0c;例如购物页面中会使用相同样式的Button按钮、Text显示文字&#xff0c;我们常用的方法是抽取公共样式或者封装成一个自定义组件到公共组…

汽车KL15、KL30、ACC的区别

文章目录 前言一、KL30是什么&#xff1f;二、KL15是什么&#xff1f;KL15信号的演变 三、为啥用KL15、KL30呢&#xff1f; 前言 相信刚接触汽车电子的伙伴都会有一个疑惑&#xff0c;什么是KL15?什么是KL30? 内心一脸懵逼…… KL是德语Klemme的缩写&#xff0c;指的是ECU的…