【深度学习目标检测】二十三、基于深度学习的行人检测计数系统-含数据集、GUI和源码(python,yolov8)

news2024/11/24 2:21:20

行人检测计数系统是一种重要的智能交通监控系统,它能够通过图像处理技术对行人进行实时检测、跟踪和计数,为城市交通规划、人流控制和安全管理提供重要数据支持。本系统基于先进的YOLOv8目标检测算法和PyQt5图形界面框架开发,具有高效、准确、易用等特点。

系统特点

  1. 基于YOLOv8的目标检测算法:YOLOv8是一种高效的目标检测算法,它能够在保证检测速度的同时,提高检测精度。本系统采用YOLOv8算法对行人进行检测,能够快速准确地识别出行人的位置,并进行计数。
  2. PyQt5图形界面框架:PyQt5是一种功能强大的图形界面开发框架,它支持跨平台开发,具有良好的可移植性。本系统采用PyQt5框架开发,界面简洁明了,易于操作。
  3. 支持多种检测方式:本系统支持对单张图片、视频文件和摄像头实时流进行检测。用户可以根据需要选择不同的检测方式,满足不同的应用场景。
  4. GPU加速功能:本系统支持GPU加速功能,可以将预测计算任务分配到GPU上进行处理,提高系统的实时检测性能。相比在CPU上进行处理,GPU加速可以大幅度降低延时,提升用户体验。

本文介绍了基于深度学习yolov8的行人检测计数系统,包括训练过程和数据准备过程,同时提供了推理的代码和GUI。对准备计算机视觉相关的毕业设计的同学有着一定的帮助。

模型在线体验:https://o554w00336.goho.co/

检测结果如下图:

一、安装YoloV8

yolov8官方文档:主页 - Ultralytics YOLOv8 文档

安装部分参考:官方安装教程

1、安装pytorch

根据本机是否有GPU,安装适合自己的pytorch,如果需要训练自己的模型,建议使用GPU版本。

①GPU版本的pytorch安装

对于GPU用户,安装GPU版本的pytorch,首先在cmd命令行输入nvidia-smi,查看本机的cuda版本,如下图,我的cuda版本是12.4(如果版本过低,建议升级nvidia驱动):

打开pytorch官网,选择合适的版本安装pytorch,如下图,建议使用conda安装防止cuda版本问题出现报错:

②CPU版本pytorch安装

打开pytorch官网,选择CPU版本安装pytorch,如下图:

2、安装yolov8

在命令行使用如下命令安装:

pip install ultralytics

二、数据集准备

本文数据集来自http://www.cbsr.ia.ac.cn/users/sfzhang/WiderPerson/

该数据集包含8000个训练数据,1000个验证数据,4382个测试数据,数据如下图:

为了使用yolov8算法进行训练,需要将该数据转换为yolov8格式,本文提供转换好的数据集下载连接:widerperson(密集行人检测)yolov8格式数据集,该数据集8000个训练数据,1000个验证数据,4382个测试数据

三、模型配置及训练

1、数据集配置文件

创建数据集配置文件rsna_pneumonia.yaml,内容如下(将path路径替换为自己的数据集路径):

# Ultralytics YOLO 🚀, AGPL-3.0 license
# COCO 2017 dataset http://cocodataset.org by Microsoft
# Example usage: yolo train data=coco.yaml
# parent
# ├── ultralytics
# └── datasets
#     └── coco  ← downloads here (20.1 GB)
 
 
# Train/val/test sets as 1) dir: path/to/imgs, 2) file: path/to/imgs.txt, or 3) list: [path/to/imgs1, path/to/imgs2, ..]
path: D:\DeepLearning\datasets\csdn\widerperson\widerperson_yolov8  # 替换为自己的数据集路径
train: images/train 
val: images/val 
test: images/val  
 
# Classes
names:
  # 0: normal
  0: pedestrains

2、训练模型

使用如下命令训练模型,数据配置文件路径更改为自己的路径,model根据自己的需要使用yolov8n/s/l/x版本,其他参数根据自己的需要进行设置:

yolo detect train project=widerperson name=train exist_ok data=widerperson/widerperson.yaml model=yolov8n.yaml epochs=100 imgsz=480 

3、验证模型

使用如下命令验证模型,相关路径根据需要修改:

yolo detect val project=widerperson name=val imgsz=480 model=widerperson/train/weights/best.pt data=widerperson/widerperson.yaml

精度如下:

# Ultralytics YOLOv8.1.20 🚀 Python-3.9.18 torch-2.2.0 CUDA:0 (NVIDIA GeForce RTX 3060, 12288MiB)
# YOLOv8n summary (fused): 168 layers, 3005843 parameters, 0 gradients, 8.1 GFLOPs
# val: Scanning D:\DeepLearning\datasets\csdn\widerperson\widerperson_yolov8\labels\val.cache... 1000 images, 0 backgrounds, 0 corrupt: 100%|██████████| 1000/1000 [00:00<?, ?it/s]
#                  Class     Images  Instances      Box(P          R      mAP50  mAP50-95): 100%|██████████| 63/63 [00:08<00:00,  7.15it/s]
#                    all       1000      27353      0.813      0.606      0.722      0.452
# Speed: 0.1ms preprocess, 2.6ms inference, 0.0ms loss, 1.3ms postprocess per image
# Results saved to widerperson\val
# 💡 Learn more at https://docs.ultralytics.com/modes/val

四、推理

训练好了模型,可以使用如下代码实现推理,权重路径修改为自己的路径:

from PIL import Image
from ultralytics import YOLO
 
# 加载预训练的YOLOv8n模型
model = YOLO('best.pt')
 
image_path = 'test.jpg'
results = model(image_path)  # 结果列表
 
# 展示结果
for r in results:
    im_array = r.plot()  # 绘制包含预测结果的BGR numpy数组
    im = Image.fromarray(im_array[..., ::-1])  # RGB PIL图像
    im.show()  # 显示图像
    im.save('results.jpg')  # 保存图像

五、界面开发

使用pyqt5开发gui界面,支持图片、视频、摄像头输入,支持导出到指定路径,其GUI如下图(完整GUI代码可在下方链接下载):

代码下载连接:基于yolov8的行人检测系统,包含训练好的权重和推理代码,GUI界面,支持图片、视频、摄像头输入,支持检测结果导出

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1523498.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

[WUSTCTF2020]颜值成绩查询 --不会编程的崽

这题也是一个很简单的盲注题目&#xff0c;这几天sql与模板注入做麻了&#xff0c;也是轻松拿捏。 它已经提示&#xff0c;enter number&#xff0c;所有猜测这里后台代码并没有使用 " 闭合。没有明显的waf提示&#xff0c; 但是or&#xff0c;and都没反应。再去fuzz一…

C++17之std::variant

1. std::variant操作 如下列出了为std:: variable <>提供的所有操作。

Spring Boot整合STOMP实现实时通信

目录 引言 代码实现 配置类WebSocketMessageBrokerConfig DTO 工具类 Controller common.html stomp-broadcast.html 运行效果 完整代码地址 引言 STOMP&#xff08;Simple Text Oriented Messaging Protocol&#xff09;作为一种简单文本导向的消息传递协议&#xf…

基础---nginx 启动不了,跟 Apache2 服务冲突

文章目录 查看 nginx 服务状态nginx 启动后 访问页面 127.0.0.1停止 nginx 服务&#xff0c;访问不了页面停止/启动 Apache2 服务&#xff0c;启动 Apache2 页面访问显示正确nginx 莫名启动不了卸载 Apache2 服务器 启动 nginx &#xff0c;但是总是不能实现反向代理&#xff0…

Java手写简易数据库--持续更新中

MYDB 0. 项目结构0.1 引用计数缓存框架为什么不使用LRU引用计数缓存缓存框架实现 0.2 共享内存数组 1. 事务管理器--TM1.1 XID 文件XID 规则XID 文件结构读取方式事务状态 1.2 代码实现 2. 数据管理器--DM2.1 页面缓存页面结构页面缓存数据页管理第一页普通页 2.2 日志文件 3. …

Linux-新手小白速秒Hadoop集群全生态搭建(图文混编超详细)

在之前的文章中&#xff0c;我教会大家如何一步一步搭建一个Hadoop集群&#xff0c;但是只提供了代码&#xff0c;怕有些朋友会在一些地方产生疑惑&#xff0c;今天我来以图文混排的方式&#xff0c;一站式交给大家如何搭建一个Hadoop高可用集群包括&#xff08;HadoopHA&#…

HTML基础:img图像标签的4个属性值详解

你好&#xff0c;我是云桃桃。今天来聊一聊图片标签。 语法 HTML <img> 标签用于在网页中插入图像&#xff0c;它是 HTML 中的一个自闭合标签。通过在网页中显示图像&#xff0c;可以丰富页面内容、传达信息和提升用户体验。 <img src"img/jay01.jpg" al…

汽车IVI中控开发入门及进阶(十三):语音识别

前言: IVI中控上的语音识别,在目前市场上也是非常显眼的一个创新,大幅改变了传统IVI的操作习惯。 语音识别Speech recognition,也称为自动语音识别(ASR)、计算机语音识别或语音到文本,是一种使程序能够将人类语音处理成书面格式的能力。 语音识别Speech recognition是计…

【JACS】:用于稳定单原子分散的催化剂架构可对吸附到 Pt 原子、氧化 Pt 簇和 TiO2上金属 Pt 簇的 CO 进行特定位点光谱和反应性测量

摘要&#xff1a;氧化物负载的贵金属纳米粒子是广泛使用的工业催化剂。由于费用和稀有性&#xff0c;开发降低贵金属纳米颗粒尺寸并稳定分散物质的合成方案至关重要。负载型原子分散的单贵金属原子代表了最有效的金属利用几何结构&#xff0c;尽管由于合成均匀且稳定的单原子分…

机器学习周记(第三十周:文献阅读-SageFormer)2024.3.11~2024.3.17

目录 摘要 ABSTRACT 1 论文信息 1.1 论文标题 1.2 论文摘要 1.3 论文背景 2 论文模型 2.1 问题描述 2.2 模型信息 2.2.1 Series-aware Global Tokens&#xff08;序列感知全局标记&#xff09; 2.2.2 Graph Structure Learning&#xff08;图结构学习&#xff09; …

【图像分割】使用Otsu 算法及迭代计算最佳全局阈值估计并实现图像分割(代码实现与分析)

本实验要求理解全局阈值分割的概念&#xff0c;并实现文本图像分割。需要大家深入理解Ostu 算法的实现过程及其迭代原理&#xff0c;同时通过学习使用Otsu 算法及其迭代&#xff0c;实践图像分割技术在文本图像处理中的应用。 以下将从实验原理、实验实现、实验结果分析三部分对…

数据结构-队列java实现

队列 队列(queue)1.队列的特点2.数组模拟队列JAVA代码3.上述过程优化 博文主要是自己学习的笔记&#xff0c;供自己以后复习使用&#xff0c; 参考的主要教程是B站的 尚硅谷数据结构和算法 队列(queue) 1.队列的特点 1&#xff09;队列是一个有序列表&#xff0c;可以用数组…

cannot find -xml2: No such file or directory的解决方法

一&#xff0c;问题现象 在编译库的时候出现如下图所示的报错&#xff1a;C:/msys64/mingw32/bin/…/lib/gcc/i686-w64-mingw32/13.2.0/…/…/…/…/i686-w64-mingw32/bin/ld.exe: ca nnot find -lxml2: No such file or directory collect2.exe: error: ld returned 1 exit s…

Linux环境下用IDEA运行Golang记录

一、背景 和存储同时开发AI项目&#xff0c;在Linux环境运行Golang项目&#xff0c;因此需要进行相关的配置。 二、Golang安装 参考&#xff1a;【Linux — 安装 Go】Linux 系统安装 Go 过程总结_linux 安装go-CSDN博客 三、IDEA中Golang配置 1、去除代理 否则在Plugins中…

奇舞周刊第522期:“Vite 又开始搞事情了!!!”

奇舞推荐 ■ ■ ■ Vite 又开始搞事情了&#xff01;&#xff01;&#xff01; Vite 的最新版本将引入一种名为 Rolldown 的新型打包工具。 unocss 究竟比 tailwindcss 快多少&#xff1f; 我们知道 unocss 很快&#xff0c;也许是目前最快的原子化 CSS 引擎 (没有之一)。 巧用…

每日五道java面试题之mybatis篇(一)

目录&#xff1a; 第一题. MyBatis是什么&#xff1f;第二题. ORM是什么?第三题. 为什么说Mybatis是半自动ORM映射工具&#xff1f;它与全自动的区别在哪里&#xff1f;第四题. 传统JDBC开发存在的问题第五题. JDBC编程有哪些不足之处&#xff0c;MyBatis是如何解决这些问题的…

差分逻辑电平 — LVDS、CML、LVPECL、HCSL互连

前言 首先了解差分逻辑电平、单端逻辑电平的基础知识 地址&#xff1a;常见的逻辑电平_常用的逻辑电平-CSDN博客 注&#xff1a; ECL >> PECL >> LVPECL演变&#xff1b; ECL速度快&#xff0c;驱动能力强&#xff0c;噪声小&#xff0c;但是功耗大&#xff0c;使…

SpringBoot(数据库操作 + druid监控功能)

文章目录 1.JDBC HikariDataSource&#xff08;SpringBoot2默认数据源&#xff09;1.数据库表设计2.引入依赖 pom.xml3.配置数据源参数 application.yml4.编写一个bean&#xff0c;映射表5.编写测试类来完成测试1.引入依赖 pom.xml2.使用JdbcTemplate进行测试3.成功&#xff0…

并发编程CountDownLatch浅析

目录 一、CountDownLatch简介二、源码三、使用3.1 demo13.2 demo2 四、应用场景五、参考链接 一、CountDownLatch简介 CountDownLatch(倒计时锁存器)是Java并发包中的一个工具类&#xff0c;用于实现多个线程之间的同步。它通过一个计数器来实现线程之间的等待和唤醒操作&…

51单片机系列-单片机定时器

&#x1f308;个人主页&#xff1a;会编辑的果子君 &#x1f4ab;个人格言:“成为自己未来的主人~” 软件延时的缺点 延时过程中&#xff0c;CPU时间被占用&#xff0c;无法进行其他任务&#xff0c;导致系统效率降低&#xff0c;延时时间越长&#xff0c;该缺点就越明显&…