数学建模-模糊性综合评价模型

news2024/11/24 6:32:26

        中医药是中国传统文化的重要组成部分,凝聚了中华民族千百年来智慧的结晶。作为中医的发源地,中国政府一直致力于保护、发展和推广中医药,采取了一系列政策措施[]。目前,中国面临着老龄化日益加剧,老年人群中慢性疾病和亚健康问题也越来越突出,中医药因其独特的治疗理念和方法,成为了改善中老年人健康状况的重要途经。于此同时,全球范围内的传染病频繁发生,例如甲型H1N1流感、COVID-19等中医药作为中国传统医学体系,以其独特的理论与实践经验,在对抗传染病中发挥了不可替代的作用。中医药不仅在疾病预防、治疗和康复阶段有着广泛的应用,近年来,中医药的逐渐被应用于药理性化妆品行业,例如中医药唇膏、中医药牙膏等。随着中医药的不断发展和创新,中医药市场在国内外得到了广泛的关注和青睐。本文通过模糊综合评价算法对2013年到2021年的中医药市场状况做定性分析和评判,旨在通过数学模型寻找到中医药市场现状和所涉及中医药市场影响因素之间的关系、对于中国医药市场现状的分析理解以及近9年中医药市场影响因素对中医药市场的综合影响作用大小变化。

        本文以中医药市场为研究对象,收集了中草药及中成药材成交额、西药类零售市场成交额等十五类在2013年到2021年的中草药市场数据。建立熵值法、灰色关联度法等模型得到合理的赋权值,通过模糊综合评价方法评价近9年中医药市场状况。结果表明熵值法结合模糊综合评价法得出的隶属度较高,说明该方法认为中医药市场在各个年份下受到的综合影响因素作用更为显著。而灰色关联度法结合模糊综合评价法得到的隶属度较低,说明该方法认为中医药市场在各个年份下受综合影响因素作用不及前者。此外中医药市场整体呈上升趋势,虽有波动,但仍保持在较高水平,两个方法的评估结果在趋势上基本一致,该研究为了解中医药市场状况提供了重要的数据和参考意见。

2.1指标体系构建

本文主要是对中医药市场现状进行评价,确定各个影响因素在2013年到2021年对中医药市场的综合影响效果。因此,构建指标体系是建立评价模型的前期准备。

首先,确定中医药市场中主要的影响因素。为了更加全面的对中医药市场现状作合理的评价,需要考虑各种因素之间的关系,确定合理的影响因素指标及等级划分,本文将将所涉及因素划分为三个级别,分别为一级、二级和三级[]

考虑到医药市场中西药市场占有重要比重,将其纳入中医药市场的一级影响因素;中草药及中成药是中医药市场的主要原料,纳入中医药市场的一级影响因素;除此之外,中医药市场属于医疗行业,药师人数和中成药制造企业对中医药市场影响较大,同时也能够反映中医药市场的规模,将其纳入一级影响因素。总之,中医药市场的影响因素分为:西药市场、中药材及中成药材、药师人数、中成药制造企业数。考虑到西药市场受西药批发市场成交额和西药零售市场成交额影响,作为西药市场的二级指标;依次类推,划分影响因素的级别,中医药市场影响因素及影响因素级别如图1所示。

图1 中医药市场影响因素及影响因素级别

2.2数据收集及预处理

根据所确立的指标体系和等级划分,通过国家统计局等官方统计平台收集相关数据。

其次,本文对所收集到的数据进行数据预处理。数据预处理是数据分析过程的重要环节之一,为后续的建模工作提供更准确、更完整的数据基础。例如所收集数据存在缺失值、数据不完整,本文通过灰度预测算法,预测所需年份的数据预测值,当该预测模型的准确性达到98%以上时,我们认为预测数据可用并对这个评估模型的记过不会造成显著影响;对于异常数据,我们选择同类数据序列的均值作为有效数据;当发现所选指标较为分散且通过数据分析发现特征时,我们选择剔除该指标部分数据,选择具有明显特征数据;由于各个因素指标具有不同的量纲,本文通过归一化、标准化等方法将数据转换到相同的尺度范围,消除因量纲不同带来的影响。数据预处理流程如图2所示:

图2 数据预处理流程图

2.3模糊综合评价模型的建立

2.3.1数据预处理

针对于已获取的数据我们利用灰色关联度法优化,对原始数据进行标准化处理,使得每个指标都在同一量纲或单位下,避免数量级较大的数据掩盖数量级较小的数据,导致模型结果偏差。

在进行熵值法计算之前,本文先对原始数据进行预处理,增加约束条件:在熵值法中增加约束条件,可以更好地反映市场数据的实际问题。例如,增加社会、经济和环境等方面的约束条件,使得评价结果更加符合实际需求。

通过灰度预测补充缺失数据时,通过对原始数据的分析,挖掘出隐藏在数据中的规律,并预测未来的发展趋势。为了提高灰度预测的精度和稳定性,本文基于粒子群优化的灰色预测模型-PSO-GM求解灰色预测模型中的参数,提高预测精度。

2.3.2指标权重的确定

为了更加全面的对中医药市场现状作合理的评估,需要考虑各种因素之间的关系。本文根据各个影响因素之间的包含关系将其分为一级、二级、三级。其中,各个年份构成备择集,中医药市场的各个影响因素构成因素集,对2013年到2021年中医药市场状况进行三级模糊综合评价。

采用模糊综合评价首先分为两个主要步骤,确定各因素权重和计算单因素影响评判矩阵。各个因素所占权重不同对评价模型的结果影响较大,为了减少权重不同对该模型的影响,提高模糊综合评价模型的科学性和可用性,本文通过熵值法和灰色关联度法分别计算出各个影响因素的权重,构成权重集[]

考虑信息过于分散不便于利用关联性分析,故在数据处理方面,我们对于过于分散的数据采用去平均值的方法,作为比较数列与参考数列间关联程度的数量表示,公式如下:

                 (1)

本文将分别利用两种方法所计算的权重来建立模糊综合评价模型,对比两种方法的优缺点。如表1所示:

表1 中医药市场影响因素的权重

影响因素/权重计算方法

熵值法

灰色关联度

中药材市场摊位数(个)

0.999

0.599

中药材及中成药类商品零售价格指数(上年=100)

0.001

0.401

西药零售营业收入(亿元)

0.986

0.316

西药类城市居民消费价格指数(上年=100)

0.012

0.390

西药零售税金及附加(亿元)

0.002

0.294

中草药及中成药类零售市场成交额(亿元)

0.291

0.272

中草药及中成药类批发市场成交额(亿元)

0.055

0.194

中医医院入院人数(万人)

0.088

0.284

中成药产量(万吨)

0.566

0.250

西药类批发市场成交额(亿元)

0.020

0.642

西药类零售市场成交额(亿元)

0.980

0.358

中草药及中成药类零售市场成交额(亿元)

0.291

0.272

中草药及中成药类批发市场成交额(亿元)

0.055

0.194

中草药及中成药类成交额(亿元)

            0.348

0.192

西药类成交额(亿元)

            0.006

0.312

药师数(万人)

            0.006

0.237

中成药制造高技术产业企业数(个)

            0.640

0.259

中草药及中成药类成交额(亿元)

            0.348

0.192

2.3.3隶属函数的确定

建立合适的隶属函数是良好评价模型的基础。由于各个因素对市场的影响程度不同,我们需要为每个因素建立相应的隶属函数,如下表2所示。

表2 各个影响因素的隶属函数

影响因素

隶属函数

中药材市场摊位数(个)

中草药及中成药类批发市场成交额(亿元)

中成药产量(万吨)

西药类批发市场成交额(亿元)

西药零售营业收入(亿元)

西药类城市居民消费价格指数

西药类城市居民消费价格指数

药师数(万人)

中成药制造高技术产业企业(个)

通过隶属函数计算出各个影响因素的单因素影响矩阵R3,在计算第二级别与第一级别的隶属度时,在矩阵R3中选取所需要的元素构成新的矩阵再进行计算。

2.3.5不同评价等级的模糊综合计算

在上文已确定各因素权重和单因素评判矩阵,根据公式(1)最终可分别在熵值法和灰色关联度法下进行归一化处理得2013年至2021年间中医药市场的隶属度B1和B2。如下表所示:

表3 2013年-2014年综合影响因素的隶属度

年份/隶属度/方法

熵值法

灰色关联度

2021

0.9009

0.8454

2020

0.8869

0.8532

2019

0.9102

0.8778

2018

0.8998

0.8535

2017

0.9368

0.8334

2016

0.9541

0.8473

2015

0.8949

0.8316

2014

0.9118

0.7822

2013

0.8769

0.7352

三、评价结果及分析

本文利用熵值法和灰色关联度法结合模糊综合评价法计算2013年到2021年中医药市场受所涉及综合影响因素的隶属度,反映2013年到2021年中医药市场状况。模型结果如图3所示:

图3 2013年-2021年综合影响因素的隶属度

可以观察到随着时间的推移,熵值法和灰色关联度法下的模糊综合评价模型在不同年份中的隶属度波动较小,反映综合影响因素在不同年份对中医药市场的影响效果较为稳定。其中,熵值法得出的隶属度较高,说明该方法认为中医药市场在各个年份下受到的综合影响因素作用更为显著。而灰色关联度法得出的隶属度较低,说明该方法认为中医药市场在各个年份下受综合影响因素作用不及前者。

从熵值法的评估结果来看,2016年的隶属度最高,为0.9541,而2013年的隶属度最低,为0.8769。这表明中医药市场在2016年达到了近年来的高点,而后逐渐下降。对比灰色关联度法的评估结果,可以发现2019年是市场隶属度的高点,为0.8778,而2013年的隶属度同样为最低,为0.7352。这两个方法的评估结果在趋势上基本一致,在2016年之后,熵值法下的中医药市场隶属度整体呈下降趋势,具体的数值波动平缓。从熵值法的评估结果来看,2017年的隶属度为0.9368,高于其他年份,而后逐渐下降至2021年的0.9009。而灰色关联度法的评估结果显示,2019年的隶属度为0.8778,同样是这段时间内的一个峰值,而后呈下降趋势,2021年的隶属度为0.8454。这表明在2017年和2019年,中医药市场出现了一些积极的变化,但整体表现仍然偏低。

从2013年至2021年的整体趋势来看,中医药市场的隶属度整体呈上升趋势,其中虽有波动,但仍保持在较高的水平上。这可能与中医药市场的发展受到了多种因素的影响有关。其中,影响因素的权重分配对评价结果的影响较大,本文采用熵值法和灰色关联度法的权重集来建立模糊综合评价模型,利用这两种方法计算得到的权重略有不同,但对于中医药市场的影响因素进行评估时,两种方法的结果相似,具有一定的可信度。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1512531.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Elasticsearch使用Kibana进行基础操作

一、Restful接口 Elasticsearch通过RESTful接口提供与其进行交互的方式。在ES中,提供了功能丰富的RESTful API的操作,包括CRUD、创建索引、删除索引等操作。你可以用你最喜爱的 web 客户端访问 Elasticsearch 。事实上,你甚至可以使用 curl …

力扣每日一题 在受污染的二叉树中查找元素 哈希 DFS 二进制

Problem: 1261. 在受污染的二叉树中查找元素 思路 👨‍🏫 灵神题解 💖 二进制 时间复杂度:初始化为 O ( 1 ) O(1) O(1);find 为 O ( m i n ( h , l o g 2 t a r g e t ) O(min(h,log_2target) O(min(h,log2​targ…

八路DI八路DO,开关量转RS-485/232,数据采集远程I/O模块 YL60

特点: ● 八路开关量输入,八路开关量输出 ● 通过RS-485/232接口可以读取输入的电平状态 ● 通过RS-485/232接口可以设定输出状态 ● 信号输入,输出及电源之间不隔离 ● 宽电源供电范围:8 ~ 32VDC ● 可靠性高,…

UI 学习 二 可访问性 模式

一 颜色对比 颜色和对比度可以用来帮助用户看到和理解应用程序的内容,与正确的元素交互,并理解操作。 颜色可以帮助传达情绪、语气和关键信息。可以选择主色、辅助色和强调色来支持可用性。元素之间足够的颜色对比可以帮助低视力的用户看到和使用你的应…

【面试精讲】Java线程6种状态和工作原理详解,Java创建线程的4种方式

Java线程6种状态和工作原理详解,Java创建线程的4种方式 目录 一、Java线程的六种状态 二、Java线程是如何工作的? 三、BLOCKED 和 WAITING 的区别 四、start() 和 run() 源码分析 五、Java创建线程的所有方式和代码详解 1. 继承Thread类 2. 实现…

数据结构从入门到精通——树和二叉树

树和二叉树 前言一、树概念及结构1.1树的概念1.2 树的相关概念(重要)1.3 树的表示1.4 树在实际中的运用(表示文件系统的目录树结构) 二、二叉树概念及结构2.1二叉树概念2.2现实中的二叉树2.3 特殊的二叉树2.4 二叉树的性质2.5 二叉…

Linux-gdb调试

文章目录 前言查看(显示)源代码 list/l运行程序run/r打断点b查看断点删除断点打开/关闭断点逐过程 逐语句查看变量常显示continuefinishuntil修改指定变量退出gdb 前言 GDB,即GNU调试器(GNU Debugger),是G…

【AI绘画】AI绘画免费网站推荐

人工智能(Artificial Intelligence,简称AI)是指一种模拟人类智能的技术。它是通过计算机系统来模拟人的认知、学习和推理能力,以实现类似于人类智能的行为和决策。人工智能技术包含多个方面,包括机器学习、深度学习、自…

JSON基础知识

目录 一、定义二、作用三、特点四、语法JSON具有以下这些形式:4.1 对象(JSONObject):4.2 数组(JSONArray):4.3 值4.4 字符串4.5 数值 五、常用的JSON解析方式5.1 org.json解析5.1.1 常用api5.1.2 get方法与opt方法对比5.1.3 使用示例5.1.3 参…

如何处理爬虫代理的404错误

目录 前言 一、什么是404错误 二、处理404错误的方法 1. 重新尝试请求 2. 使用备用代理 3. 日志记录 总结 前言 在进行网络爬虫开发过程中,经常会遇到一些特殊的错误,例如404错误。当我们使用代理服务器进行网络爬取时,有时候会遇到4…

C#,红黑树(Red-Black Tree)的构造,插入、删除及修复、查找的算法与源代码

1 红黑树(Red-Black Tree) 如果二叉搜索树满足以下红黑属性,则它是红黑树: 每个节点不是红色就是黑色。根是黑色的。每片叶子(无)都是黑色的。如果一个节点是红色的,那么它的两个子节点都是黑色的。对于每个节点,从节点到后代叶的所有路径都包含相同数量的黑色节点。红…

YOLOv8改进 | 图像去雾 | 利用图像去雾网络AOD-PONO-Net网络增改进图像物体检测

一、本文介绍 本文给大家带来的改进机制是利用AODNet图像去雾网络结合PONO机制实现二次增强,我将该网络结合YOLOv8针对图像进行去雾检测(也适用于一些模糊场景,图片不清晰的检测),同时本文的内容不影响其它的模块改进可以作为工作量凑近大家的论文里,非常的适用,图像去…

【线代基础】张量、向量、标量、矩阵的区别

1、标量(Scalar) 纯数字,无方向性、无维度概念。因此也叫 标量张量、零维张量、0D张量 例如,x18,x21.34 x1、x2即为标量 2、张量(tensor) 具有方向性,可以理解为一个多维数组&a…

【报错】File ‘xxx.ui‘ is not valid

Q: Pysider6中设计好的ui转py时,出现File ‘xxx.ui’ is not valid A: 重新配置外部工具 $FileName$ -o $FileNameWithoutExtension$.py $FileDir$

中间件 Redis 服务集群的部署方案

前言 在互联网业务发展非常迅猛的早期,如果预算不是问题,强烈建议使用“增强单机硬件性能”的方式提升系统并发能力,因为这个阶段,公司的战略往往是发展业务抢时间,而“增强单机硬件性能”往往是最快的方法。 正是在这…

elasticsearch篇:DSL查询语法

1.DSL查询文档 众所周知,elasticsearch的查询依然是基于JSON风格的DSL来实现的。 1.1. DSL查询分类 Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括: 查询所有:查询出…

Linux学习:基础开发工具的使用(1)

目录 1. Linux软件包管理器:yum工具1.1 yum是什么(软件商城)1.2 yum的使用1.3 yum的背景生态 2. 项目开发与集成开发环境3. vim编辑器3.1 vim编辑器的常见模式与模式切换3.3 vim编辑器的使用3.3.1 命令模式下的常见命令:3.3.2 vim…

使用API有效率地管理Dynadot域名,使用API设置域名隐私保护

关于Dynadot Dynadot是通过ICANN认证的域名注册商,自2002年成立以来,服务于全球108个国家和地区的客户,为数以万计的客户提供简洁,优惠,安全的域名注册以及管理服务。 Dynadot平台操作教程索引(包括域名邮…

AHU 数据库 实验三

《数据库》实验报告 【实验名称】 实验3 数据库的连接查询 【实验目的】 1. 熟悉基本的连接查询的概念和作用; 2. 了解数据库管理系统DBMS 实现连接查询的基本方法; 3. 掌握SQL语言连接查询语句的语法和功能&#…

Spring之注入模型

前言 之前我写过一篇关于BeanDefinition的文章,讲述了各个属性的作用,其中有一个属性我没有提到,因为这个属性比较重要,所以这里单独开一篇文章来说明 上一篇博文链接Spring之BeanDefinitionhttps://blog.csdn.net/qq_38257958/article/details/134823169?spm1001.2014.3001…