elasticsearch篇:DSL查询语法

news2025/1/14 10:51:55

1.DSL查询文档

众所周知,elasticsearch的查询依然是基于JSON风格的DSL来实现的。

1.1. DSL查询分类

Elasticsearch提供了基于JSON的DSL(Domain Specific Language)来定义查询。常见的查询类型包括:

  • 查询所有:查询出所有数据,一般测试用,例如: match_all
  • 全文检索(full text)查询:利用分词器对用户输入内容分词,然后去倒排索引库中匹配。例如:

        match_query

        multi_match_query

  • 精确查询:根据精确词条值查找数据,一般是查找keyword,数值,日期,boolean等类型字段,例如:

        ids

        range

        term

  • 地理(geo)查询:根据经纬度查询,例如

        geo_distance

        geo_bounding_box

  • 复合(compound)查询:复合查询可以将上述各种查询条件组合起来,合并查询条件,例如:

        bool

        function_score

查询的语法基本一致:

GET /indexName/_search
{
    "query": {
        "查询类型": {
          "查询条件": "条件值"
        }
    }
}

我们以查询所有为例,其中:

  • 查询类型为match_all

  • 没有查询条件

GET /indexName/_search
{
    "query" :{
      "match_all":{
        }
    }
}

其它查询无非就是查询类型查询条件的变化。

1.2.全文检索查询

1.2.1.使用场景

全文检索查询的基本流程如下:

  • 对用户搜索的内容做分词,得到词条

  • 根据词条去倒排索引库中匹配,得到文档id

  • 根据文档id找到文档,返回给用户

比较常用的场景包括:

  • 商城的输入框搜索

  • 百度输入框搜索

例如京东:                            

       ​​   

因为是拿着词条去匹配,因此参与搜索的字段也必须是可分词的text类型的字段。

1.2.2.基本语法

常见的全文检索查询包括:

  • match查询:单字段查询

  • multi_match查询:多字段查询,任意一个字段符合条件就算符合查询条件

match查询语法如下:

GET /indexName/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT"
    }
  }
}

#举例:
# match查询
GET /hotel/_search
{
  "query": {
    "match": {
      "all": "外滩如家"
    }
  }
}

mulit_match语法如下:

GET /indexName/_search
{
  "query": {
    "multi_match": {
      "query": "TEXT",
      "fields": ["FIELD1", " FIELD12"]
    }
  }
}


#举例
# multi_match查询
GET /hotel/_search
{
  "query": {
    "multi_match": {
      "query": "外滩如家",
      "fields": ["brand","name","business"]
    }
  }
}

                                

可以看到,两种查询结果是一样的,为什么?

因为我们将brand、name、business值都利用copy_to复制到了all字段中。因此你根据三个字段搜索,和根据all字段搜索效果当然一样了。

但是,搜索字段越多,对查询性能影响越大,因此建议采用copy_to,然后单字段查询的方式。

1.2.4.总结

match和multi_match的区别是什么?

  • match:根据一个字段查询

  • multi_match:根据多个字段查询,参与查询字段越多,查询性能越差

1.3. 精准查询

1.3.1.term查询

因为精确查询的字段搜是不分词的字段,因此查询的条件也必须是不分词的词条。查询时,用户输入的内容跟自动值完全匹配时才认为符合条件。如果用户输入的内容过多,反而搜索不到数据。

语法说明:

// term查询
GET /indexName/_search
{
  "query": {
    "term": {
      "FIELD": {
        "value": "VALUE"
      }
    }
  }
}

示例:

当我搜索的是精确词条时,能正确查询出结果:

但是,当我搜索的内容不是词条,而是多个词语形成的短语时,反而搜索不到:

1.3.2.range查询

范围查询,一般应用在对数值类型做范围过滤的时候。比如做价格范围过滤。

基本语法:

// range查询
GET /indexName/_search
{
  "query": {
    "range": {
      "FIELD": {
        "gte": 10, // 这里的gte代表大于等于,gt则代表大于
        "lte": 20 // lte代表小于等于,lt则代表小于
      }
    }
  }
}

       示例:

1.3.3.总结

精确查询常见的有哪些?

  • term查询:根据词条精确匹配,一般搜索keyword类型、数值类型、布尔类型、日期类型字段

  • range查询:根据数值范围查询,可以是数值、日期的范围

1.4.地理坐标查询

所谓的地理坐标查询,其实就是根据经纬度查询,官方文档:Geo queries | Elasticsearch Guide [8.12] | Elastic

常见的使用场景包括:

  • 携程:搜索我附近的酒店

  • 滴滴:搜索我附近的出租车

  • 微信:搜索我附近的人

附近的酒店:

1.4.1.矩形范围查询

矩形范围查询,也就是geo_bounding_box查询,查询坐标落在某个矩形范围的所有文档:

                        

查询时,需要指定矩形的左上右下两个点的坐标,然后画出一个矩形,落在该矩形内的都是符合条件的点。

语法如下:

// geo_bounding_box查询
GET /indexName/_search
{
  "query": {
    "geo_bounding_box": {
      "FIELD": {
        "top_left": { // 左上点
          "lat": 31.1,
          "lon": 121.5
        },
        "bottom_right": { // 右下点
          "lat": 30.9,
          "lon": 121.7
        }
      }
    }
  }
}

这种并不符合“附近的人”这样的需求,所以我们就不做了。

1.4.2.附近查询

附近查询,也叫做距离查询(geo_distance):查询到指定中心点小于某个距离值的所有文档。

换句话来说,在地图上找一个点作为圆心,以指定距离为半径,画一个圆,落在圆内的坐标都算符合条件:

语法说明:

// geo_distance 查询
GET /indexName/_search
{
  "query": {
    "geo_distance": {
      "distance": "15km", // 半径
      "FIELD": "31.21,121.5" // 圆心
    }
  }
}

示例:

我们先搜索陆家嘴附近15km的酒店:

发现共有47家酒店。

然后把半径缩短到3公里:

可以发现,搜索到的酒店数量减少到了5家。

1.5.复合查询

复合(compound)查询:复合查询可以将其它简单查询组合起来,实现更复杂的搜索逻辑。常见的有两种:

  • fuction score:算分函数查询,可以控制文档相关性算分,控制文档排名

  • bool query:布尔查询,利用逻辑关系组合多个其它的查询,实现复杂搜索

1.5.1.相关性算分

当我们利用match查询时,文档结果会根据与搜索词条的关联度打分(_score),返回结果时按照分值降序排列。

例如,我们搜索 "虹桥如家",结果如下:

[
  {
    "_score" : 17.850193,
    "_source" : {
      "name" : "虹桥如家酒店真不错",
    }
  },
  {
    "_score" : 12.259849,
    "_source" : {
      "name" : "外滩如家酒店真不错",
    }
  },
  {
    "_score" : 11.91091,
    "_source" : {
      "name" : "迪士尼如家酒店真不错",
    }
  }
]

在elasticsearch中,早期使用的打分算法是TF-IDF算法,公式如下:

        

在后来的5.1版本升级中,elasticsearch将算法改进为BM25算法,公式如下:

                

TF-IDF算法有一各缺陷,就是词条频率越高,文档得分也会越高,单个词条对文档影响较大。而BM25则会让单个词条的算分有一个上限,曲线更加平滑:

        

小结:elasticsearch会根据词条和文档的相关度做打分,算法由两种:

  • TF-IDF算法

  • BM25算法,elasticsearch5.1版本后采用的算法

1.5.2.算分函数查询

根据相关度打分是比较合理的需求,但合理的不一定是产品经理需要的。

以百度为例,你搜索的结果中,并不是相关度越高排名越靠前,而是谁掏的钱多排名就越靠前。如图:

要想认为控制相关性算分,就需要利用elasticsearch中的function score 查询了。

1)语法说明

         

function score 查询中包含四部分内容:

  • 原始查询条件:query部分,基于这个条件搜索文档,并且基于BM25算法给文档打分,原始算分(query score)

  • 过滤条件:filter部分,符合该条件的文档才会重新算分

  • 算分函数:符合filter条件的文档要根据这个函数做运算,得到的函数算分(function score),有四种函数

    • weight:函数结果是常量

    • field_value_factor:以文档中的某个字段值作为函数结果

    • random_score:以随机数作为函数结果

    • script_score:自定义算分函数算法

  • 运算模式:算分函数的结果、原始查询的相关性算分,两者之间的运算方式,包括:

    • multiply:相乘

    • replace:用function score替换query score

    • 其它,例如:sum、avg、max、min

function score的运行流程如下:

  • 1)根据原始条件查询搜索文档,并且计算相关性算分,称为原始算分(query score)

  • 2)根据过滤条件,过滤文档

  • 3)符合过滤条件的文档,基于算分函数运算,得到函数算分(function score)

  • 4)将原始算分(query score)和函数算分(function score)基于运算模式做运算,得到最终结果,作为相关性算分。

因此,其中的关键点是:

  • 过滤条件:决定哪些文档的算分被修改

  • 算分函数:决定函数算分的算法

  • 运算模式:决定最终算分结果

2)示例

需求:给“如家”这个品牌的酒店排名靠前一些

翻译一下这个需求,转换为之前说的四个要点:

  • 原始条件:不确定,可以任意变化

  • 过滤条件:brand = "如家"

  • 算分函数:可以简单粗暴,直接给固定的算分结果,weight

  • 运算模式:比如求和

因此最终的DSL语句如下:

GET /hotel/_search
{
  "query": {
    "function_score": {
      "query": {  .... }, // 原始查询,可以是任意条件
      "functions": [ // 算分函数
        {
          "filter": { // 满足的条件,品牌必须是如家
            "term": {
              "brand": "如家"
            }
          },
          "weight": 2 // 算分权重为2
        }
      ],
      "boost_mode": "sum" // 加权模式,求和
    }
  }
}

测试,在未添加算分函数时,如家得分如下:

添加了算分函数后,如家得分就提升了:  

3)小结

function score query定义的三要素是什么?

  • 过滤条件:哪些文档要加分

  • 算分函数:如何计算function score

  • 加权方式:function score 与 query score如何运算

1.5.3.布尔查询

布尔查询是一个或多个查询子句的组合,每一个子句就是一个子查询。子查询的组合方式有:

  • must:必须匹配每个子查询,类似“与”

  • should:选择性匹配子查询,类似“或”

  • must_not:必须不匹配,不参与算分,类似“非”

  • filter:必须匹配,不参与算分

比如在搜索酒店时,除了关键字搜索外,我们还可能根据品牌、价格、城市等字段做过滤:

        

每一个不同的字段,其查询的条件、方式都不一样,必须是多个不同的查询,而要组合这些查询,就必须用bool查询了。

需要注意的是,搜索时,参与打分的字段越多,查询的性能也越差。因此这种多条件查询时,建议这样做:

  • 搜索框的关键字搜索,是全文检索查询,使用must查询,参与算分

  • 其它过滤条件,采用filter查询。不参与算分

1)语法示例:
# Boolean Query查询
GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "term": {
            "city": "上海"
          }
        }
      ],
      "should": [
        {
          "term": {
            "brand": "皇冠假日"
          }
        },
        {
          "term": {
            "brand": "华美达"
          }
        }
      ],
      "must_not": [
        {
          "range": {
            "price": {
              "lte": 500
            }
          }
        }
      ],
      "filter": [
        {
          "range": {
            "score": {
              "gte": 45 
            }
          }
        }
      ]
    }
  }
}
2)示例

需求:搜索名字包含“如家”,价格不高于400,在坐标31.21,121.5周围10km范围内的酒店。

分析:

  • 名称搜索,属于全文检索查询,应该参与算分。放到must中

  • 价格不高于400,用range查询,属于过滤条件,不参与算分。放到must_not中

  • 周围10km范围内,用geo_distance查询,属于过滤条件,不参与算分。放到filter中

GET /hotel/_search
{
  "query": {
    "bool": {
      "must": [
        {
          "match":{
            "name": "如家"
          }
        }
      ],
      "must_not": [
        {
          "range": {
            "price": {
              "gte": 400
            }
          }
        }
      ],
      "filter": [
        {
          "geo_distance": {
            "distance": "10km",
            "location": {
              "lat": 31.21,
              "lon": 121.5
            }
          }
        }
      ]
    }
  }
}

3)小结

bool查询有几种逻辑关系?

  • must:必须匹配的条件,可以理解为“与”

  • should:选择性匹配的条件,可以理解为“或”

  • must_not:必须不匹配的条件,不参与打分

  • filter:必须匹配的条件,不参与打分

2.搜索结果处理

搜索的结果可以按照用户指定的方式去处理或展示。

2.1.排序

elasticsearch默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword类型、数值类型、地理坐标类型、日期类型等。

2.1.1.普通字段排序

keyword、数值、日期类型排序的语法基本一致。

语法

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "FIELD": "desc"  // 排序字段、排序方式ASC、DESC
    }
  ]
}

排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推

示例

需求描述:酒店数据按照用户评价(score)降序排序,评价相同的按照价格(price)升序排序

2.1.2.地理坐标排序

地理坐标排序略有不同。

语法说明

GET /indexName/_search
{
  "query": {
    "match_all": {}
  },
  "sort": [
    {
      "_geo_distance" : {
          "FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点
          "order" : "asc", // 排序方式
          "unit" : "km" // 排序的距离单位
      }
    }
  ]
}

这个查询的含义是:

  • 指定一个坐标,作为目标点

  • 计算每一个文档中,指定字段(必须是geo_point类型)的坐标 到目标点的距离是多少

  • 根据距离排序

示例:

需求描述:实现对酒店数据按照到你的位置坐标的距离升序排序

提示:获取你的位置的经纬度的方式:获取鼠标点击经纬度-地图属性-示例中心-JS API 2.0 示例 | 高德地图API

假设我的位置是:31.034661,121.612282,寻找我周围距离最近的酒店

2.2.分页

elasticsearch 默认情况下只返回top10的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch中通过修改from、size参数来控制要返回的分页结果:

  • from:从第几个文档开始

  • size:总共查询几个文档

类似于mysql中的limit ?, ?

2.2.1.基本的分页

分页的基本语法如下:

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 0, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

2.2.2.深度分页问题

现在,我要查询990~1000的数据,查询逻辑要这么写:

GET /hotel/_search
{
  "query": {
    "match_all": {}
  },
  "from": 990, // 分页开始的位置,默认为0
  "size": 10, // 期望获取的文档总数
  "sort": [
    {"price": "asc"}
  ]
}

这里是查询990开始的数据,也就是 第990~第1000条 数据。

不过,elasticsearch内部分页时,必须先查询 0~1000条,然后截取其中的990 ~ 1000的这10条:

        

查询TOP1000,如果es是单点模式,这并无太大影响。

但是elasticsearch将来一定是集群,例如我集群有5个节点,我要查询TOP1000的数据,并不是每个节点查询200条就可以了。

因为节点A的TOP200,在另一个节点可能排到10000名以外了。

因此要想获取整个集群的TOP1000,必须先查询出每个节点的TOP1000,汇总结果后,重新排名,重新截取TOP1000。

那如果我要查询9900~10000的数据呢?是不是要先查询TOP10000呢?那每个节点都要查询10000条?汇总到内存中?

当查询分页深度较大时,汇总数据过多,对内存和CPU会产生非常大的压力,因此elasticsearch会禁止from+ size 超过10000的请求。

针对深度分页,ES提供了两种解决方案,官方文档:

  • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。

  • scroll:原理将排序后的文档id形成快照,保存在内存。官方已经不推荐使用。

2.2.3.小结

分页查询的常见实现方案以及优缺点:

  • from + size

    • 优点:支持随机翻页

    • 缺点:深度分页问题,默认查询上限(from + size)是10000

    • 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索

  • after search

    • 优点:没有查询上限(单次查询的size不超过10000)

    • 缺点:只能向后逐页查询,不支持随机翻页

    • 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页

  • scroll

    • 优点:没有查询上限(单次查询的size不超过10000)

    • 缺点:会有额外内存消耗,并且搜索结果是非实时的

    • 场景:海量数据的获取和迁移。从ES7.1开始不推荐,建议用 after search方案。

2.3.高亮

2.3.1.高亮原理

什么是高亮显示呢?

我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:

高亮显示的实现分为两步:

  • 1)给文档中的所有关键字都添加一个标签,例如<em>标签

  • 2)页面给<em>标签编写CSS样式

2.3.2.实现高亮

高亮的语法

GET /hotel/_search
{
  "query": {
    "match": {
      "FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询
    }
  },
  "highlight": {
    "fields": { // 指定要高亮的字段
      "FIELD": {
        "pre_tags": "<em>",  // 用来标记高亮字段的前置标签
        "post_tags": "</em>" // 用来标记高亮字段的后置标签
      }
    }
  }
}

注意:

  • 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。

  • 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮

  • 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false

示例

2.4.总结

查询的DSL是一个大的JSON对象,包含下列属性:

  • query:查询条件

  • from和size:分页条件

  • sort:排序条件

  • highlight:高亮条件

示例:

                 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1512502.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Linux学习:基础开发工具的使用(1)

目录 1. Linux软件包管理器&#xff1a;yum工具1.1 yum是什么&#xff08;软件商城&#xff09;1.2 yum的使用1.3 yum的背景生态 2. 项目开发与集成开发环境3. vim编辑器3.1 vim编辑器的常见模式与模式切换3.3 vim编辑器的使用3.3.1 命令模式下的常见命令&#xff1a;3.3.2 vim…

使用API有效率地管理Dynadot域名,使用API设置域名隐私保护

关于Dynadot Dynadot是通过ICANN认证的域名注册商&#xff0c;自2002年成立以来&#xff0c;服务于全球108个国家和地区的客户&#xff0c;为数以万计的客户提供简洁&#xff0c;优惠&#xff0c;安全的域名注册以及管理服务。 Dynadot平台操作教程索引&#xff08;包括域名邮…

AHU 数据库 实验三

《数据库》实验报告 【实验名称】 实验3 数据库的连接查询 【实验目的】 1. 熟悉基本的连接查询的概念和作用&#xff1b; 2. 了解数据库管理系统DBMS 实现连接查询的基本方法&#xff1b; 3. 掌握SQL语言连接查询语句的语法和功能&#…

Spring之注入模型

前言 之前我写过一篇关于BeanDefinition的文章,讲述了各个属性的作用,其中有一个属性我没有提到,因为这个属性比较重要,所以这里单独开一篇文章来说明 上一篇博文链接Spring之BeanDefinitionhttps://blog.csdn.net/qq_38257958/article/details/134823169?spm1001.2014.3001…

旅游景区公共广播 园区广播 公路服务区广播

旅游景区公共广播 园区广播 公路服务区广播 旅游景区公共广播 旅游景区公共广播(又称背景音乐)简称BGM&#xff0c;它的主要作用是掩盖噪声并创造一种轻松和谐的气氛&#xff0c;是一种创造轻松愉快环境气氛的音乐。掩盖环境噪声&#xff0c;创造与旅游景区相适应的气氛&#…

48. 【Linux教程】yum 软件包管理

本小节介绍如何在 Linux 系统中使用 yum 命令软件管理。 1.yum 简介 yum 是 Red Hat 软件包管理器&#xff0c;它能够查询有关可用软件包的信息&#xff0c;从存储库获取软件包&#xff0c;安装和卸载软件包&#xff0c;以及将整个系统更新到最新的可用版本。yum 在更新&#…

(2022级)成都工业学院Java程序设计(JAVA)实验一:编写一个简单的Java程序

写在前面 1、基于2022级软件工程/计算机科学与技术实验指导书 2、代码仅提供参考 3、如果代码不满足你的要求&#xff0c;请寻求其他的途径 运行环境 window11家庭版 IntelliJ IDEA 2023.2.2 jdk17.0.6 实验要求 1、 控制台菜单。要求如下&#xff1a; 1&#xff09;…

【算法面试题】-07

小明找位置 题目描述 小朋友出操&#xff0c;按学号从小到大排成一列;小明来迟了&#xff0c;请你给小明出个主意&#xff0c;让他尽快找到他应该排的位置。 算法复杂度要求不高于nLog(n);学号为整数类型&#xff0c;队列规模<10000; 输入描述 1、第一行:输入已排成队列的…

金融知识分享系列之:财不入急门——迫切盈利的欲望是痛苦的根源

金融知识分享系列之&#xff1a;财不入急门——迫切盈利的欲望是痛苦的根源 一、错误观点二、正确观点 一、错误观点 迫切盈利&#xff1a; 总是怕错过机会&#xff0c;着急入场自己认为很好的机会&#xff0c;就想重仓押注&#xff0c;挽回损失想学习一套规则&#xff0c;立…

PCB差分通孔的数值建模方法

目录 0 引言 1 基于CST的3D通孔模型 2 通孔模型的近似等效计算 3 利用ADS进行电路仿真分析 4 总结 0 引言 当数据速率超过10Gbps时&#xff0c;PCB上的通孔所带来的寄生参数会成为影响数据误码率的关键因素之一&#xff0c;虽然通过三维电磁场求解器提取过孔的行为模型&…

京津冀协同发展:北京·光子1号金融算力中心——智能科技新高地

京津冀协同发展是党中央在新的历史条件下提出的一项重大国家战略&#xff0c;对于全面推进“五位一体”总体布局&#xff0c;以中国式现代化全面推进强国建设、民族复兴伟业&#xff0c;具有重大现实意义和深远历史意义。随着京津冀协同发展战略的深入推进&#xff0c;区域一体…

高项-项目整合管理

今天找到一个讲的还不错的视频&#xff0c;放上来存一下&#xff1a;【第4版】第8章-项目整合管理(8.1)_哔哩哔哩_bilibili 项目整合管理的目标 资源分配平衡竞争性需求研究各种备选方法裁剪过程以实现项目目标管理各个项目管理知识域之间的依赖关系 项目整合管理的过程 制…

系统设计学习(二)用户认证场景

一、常用鉴权方式 HTTP Basic Authentication (HTTP基本认证) session-cookie 1&#xff0c;服务器在接受客户端首次访问时在服务器端创建session&#xff0c;然后保存session(我们可以将session保存在内存中&#xff0c;也可以保存在redis中&#xff0c;推荐使用后者)&…

【Docker】 ubuntu18.04编译时内存不足需要使用临时交换分区解决“c++: internal compiler error“错误

【Docker】 ubuntu18.04编译时内存不足需要使用临时交换分区解决"c: internal compiler error"错误 问题描述 安装独立功能包时编译不成功&#xff0c;出现 “c: internal compiler error: Killed(program cciplus)” 错误。 解决方案 出现这个问题的原因大概率是…

[LeetCode][LCR174] 寻找二叉搜索树中的目标节点

题目 LCR 174. 寻找二叉搜索树中的目标节点 某公司组织架构以二叉搜索树形式记录&#xff0c;节点值为处于该职位的员工编号。请返回第 cnt 大的员工编号。 示例 1: 输入&#xff1a;root [7, 3, 9, 1, 5], cnt 27/ \3 9/ \ 1 5 输出&#xff1a;7示例 2: 输入: ro…

【Redis】-Redis实现高并发下秒杀系统

文章目录 前言 一、场景二、商品超卖的场景三、使用分布式锁解决超卖四、使用Redis事务乐观锁解决超卖 ** 前言 Redis事务   Redis事务是一种将多个命令打包执行的机制&#xff0c;确保这些命令要么全部执行成功&#xff0c;要么全部执行失败。Redis事务通过MULTI、EXEC、D…

机器视觉检测设备的组成要素

机器视觉检测设备是一种先进的自动化检测技术工具&#xff0c;它利用光学、图像处理和计算机硬件及软件技术模拟并扩展人类的视觉功能&#xff0c;以实现对产品或目标物体进行自动化的尺寸测量、缺陷检测、表面质量评估、颜色识别、形状匹配以及位置判断等功能。这种设备通常包…

【Rockchip android7.1 平台rtl8821cs wifi移植调试】

Rockchip 平台rtl8821cs wifi移植调试 问题描述解决方法 郑重声明:本人原创博文&#xff0c;都是实战&#xff0c;均经过实际项目验证出货的 转载请标明出处:攻城狮2015 Platform: Rockchip rk3128 OS:Android 7.1.2 Kernel: 3.10 问题描述 客户需要在现在的板子上调一款RTL882…

【惠友精术】你见过给膝关节“打补丁”吗?单髁置换术,微创保膝真有一套

有什么方法可以让“换膝盖”既没那么痛&#xff0c;苦头又吃得少呢&#xff1f;你别说&#xff0c;还真有&#xff01; 近日&#xff0c;关节外科团队顺利为一例膝关节退变的患者完成了“膝关节单髁置换术”&#xff0c;实施了微小切口下对膝关节病变部位的精准治疗。该手术的成…

SV-7045网络草坪音箱安装说明 景区园区背景音乐广播石头音箱

SV-7045网络草坪音箱安装说明 景区园区背景音乐广播石头音箱 在做室外公共广播/背景音乐系统时&#xff0c;对于草坪音箱的安装方法,大家可能不甚了解&#xff0c;所以将具体安装方法作简要说明。 音箱安装步骤如下&#xff1a; 1.测量草地音箱的底座尺寸大小&#xff0c;最…