【李沐论文精读】GPT、GPT-2和GPT-3论文精读

news2024/11/26 8:17:30

论文:

        GPT:Improving Language Understanding by Generative Pre-Training

        GTP-2:Language Models are Unsupervised Multitask Learners

        GPT-3:Language Models are Few-Shot Learners

参考:GPT、GPT-2、GPT-3论文精读、论文小结:GPT1、李宏毅版GPT、

GPT-1/GPT-2/GPT-3/GPT-3.5 语言模型详细介绍、GPT系列:GPT, GPT-2, GPT-3精简总结

 关于Transformer、BERT和GPT的时间轴,如下:

三个模型的对比

一、GPT

        GPT的训练过程采用了预训练和微调的二段式训练策略。在预训练阶段,GPT模型基于大规模的语料进行无监督预训练,得到文本的语义向量。具体来说,GPT采用了标准语言模型,即通过上文预测当前的词

        GPT提出的一种半监督方案:

  • 非监督式预训练: 利用大规模无标记语料,构建预训练单向语言模型。
  • 监督式微调: 用预训练的结果作为下游任务的初始化参数,增加一个线性层,匹配下游任务
    • 具体是DecoderTransformer参数用预训练的结果初始化,和词向量相比,直接对句子序列建模。
    • 采用的Transormer Decoder, 和原始的Transformer相比,因为不是seq2seq模型,将对应部份的模块去除。
1.1 模型结构

        GPT只使用了Transformer 的Decoder结构,而且只是用了Mask Multi-Head Attention。Transformer 结构提出是用于机器翻译任务,机器翻译是一个序列到序列的任务,因此 Transformer 设计了Encoder 用于提取源端语言的语义特征,而用 Decoder 提取目标端语言的语义特征,并生成相对应的译文。GPT目标是服务于单序列文本的生成式任务,所以舍弃了关于 Encoder部分以及包括 Decoder 的 Encoder-Dcoder Attention 层(也就是 Decoder中 的 Multi-Head Atteion)。

        GPT保留了Decoder的Masked Multi-Attention 层和Feed Forward层,并扩大了网络的规模。将层数扩展到12层,GPT还将Attention 的维数扩大到768(原来为512),将 Attention 的头数增加到12层(原来为8层),将 Feed Forward 层的隐层维数增加到3072(原来为2048),总参数达到1.5亿。

        BERT与GPT的区别

  • BERT是用了Transformer中的Encoder部分,它更类似完形填空,根据上下文来确定中间词(在预测词的时候既能看到前面的也能看后面的)
  • GPT用了Transformer中Decoder部分,它是标准的语言模型。通过给出的上文预测下一个词,类似预测未来。

        对于位置编码的部分,实际上GPT和普通的Transformer的区别还是很大的,普通的Transformer的位置编码,是由余弦+正弦的方式学习出来的,而GPT中,采用与词向量相似的随机初始化,并在训练中进行更新,即是把每一个位置当做一个要学习的embedding来做。

1.2 预训练+微调

GPT属于自监督预训练 (语言模型)+微调的范式。

1.2.1 预训练
  • 预训练:用的是标准的语言模型的目标函数,即似然函数,根据前k个词预测下一个词的概率。

        假设有一个没有标号的文本\upsilon =\left \{ u_{1},...,u_{n} \right \},GPT使用一个标准语言模型的目标函数来最大化下面的似然函数:

L_{1}( \upsilon )=\sum_{i}logP(u_i|u_{i-k},...,u_{i-1};\Theta )

其中,k是上下文窗口大小。

h_0=UW_e+W_p

h_l=transformer_block(h_{l-1})\forall i\in [1,n]

P(u)=softmax(h_nW_e^T)

其中U=(u_{-k},...,u_{-i}),第一步:UW_e是对词嵌入进行投影,W_p代表位置信息的编码,两者相加得到第一层输出h_0。第二步:n层第一部的transformer块,每一层把上一层的输出作为输入经过计算得到输出,因为Transformer不会影响输入输出的形状。第三步:拿到最后的输出做一个投影利用softmax就会得到概率分布。

1.2.2 微调
  • 微调:用的是完整的输入序列+标签。目标函数=有监督的目标函数+λ*无监督的目标函数。

        在微调任务里是有标号的数据集。具体来说,每次输入一个长为m的词序列x^1,...x^m,序列的标号为y。通过输入的序列去预测标号y

P(y|x^1,...,x^m)=softmax(h_l^mW_y)

        把训练好的序列给GPT模型,拿到transformer快的最后一层输出h_l^m,乘以输出层W_y,得到的结果做一个softmax就得到所需要的概率了。

        把所有带有标号的序列对输入后,通过计算真实的标号概率P,最后进行最大化。

L_2(C)=\sum_{x,y}lopP(y|x^1,...,x^m)

        如果把有监督的分类和之前的无监督语言模型放在一起,效果会更好。

L_3(C)=L_2(C)+\lambda *L_1(C)

1.3 不同下游任务的输入转换

        GPT的Decoder运作例子

二、GPT-2

GPT-2与GPT的区别
        GPT-2和GPT的区别在于GPT-2使用了更多的网络参数和更大的数据集,以此来训练一个泛化能力更强的词向量模型。GPT-2相比于GPT有如下几点区别:

  •  主推zero-shot,而GPT-1为pre-train+fine-tuning;
  • 模型更大,参数量达到了15亿个,而GPT-1只有1.17亿个;
  • 数据集更大,WebText数据集包含了40GB的文本数据,而GPT-1只有5GB;
  • 训练参数变化,batch_size 从 64 增加到 512,上文窗口大小从 512 增加到 1024;

        所以GPT-2的核心思想就是,当模型的容量非常大且数据量足够丰富时,仅仅靠语言模型的学习便可以完成其他有监督学习的任务,不需要在下游任务微调。

2.1 模型结构

        在模型结构方面,整个GPT-2的模型框架与GPT相同,只是做了几个地方的调整,这些调整更多的是被当作训练时的trick,而不作为GPT-2的创新,具体为以下几点:

  • 后置层归一化( post-norm )改为前置层归一化( pre-norm );
  • 在模型最后一个自注意力层之后,额外增加一个层归一化;
  • 调整参数的初始化方式,按残差层个数进行缩放,缩放比例为;
  • 输入序列的最大长度从 512 扩充到 1024;

        GPT-2 进行上述模型调整的主要原因在于,随着模型层数不断增加,梯度消失和梯度爆炸的风险越来越大,这些调整能够减少预训练过程中各层之间的方差变化,使梯度更加稳定。最终 GPT-2 提供了四种规模的模型。

2.2 预训练+zero-shot

        预训练和GPT基本没什么区别,但是对下游任务用了zero-shot。

  • GPT-2可以在zero-shot设定下实现下游任务,即不需要用有标签的数据再微调训练。
  • 为实现zero-shot,下游任务的输入就不能像GPT那样在构造输入时加入开始、中间和结束的特殊字符,这些是模型在预训练时没有见过的,而是应该和预训练模型看到的文本一样,更像一个自然语言。
  • 可以通过做prompt的方式来zero-shot。例如机器翻译和阅读理解,可以把输入构造成,“请将下面的一段英语翻译成法语,英语,法语”。
  • 为何zero-shot这种方式是有效的呢?从一个尽可能大且多样化的数据集中一定能收集到不同领域不同任务相关的自然语言描述示例,数据集里就存在展示了这些prompt示例,所以训练出来就自然而然有一定zero-shot的能力了。
2.2.1 zero-shot

        在GPT中,模型预训练完成之后会在下游任务上微调,在构造不同任务的对应输入时,我们会引入开始符(Start)、分隔符(Delim)、结束符(Extract)。虽然模型在预训练阶段从未见过这些特殊符号,但是毕竟有微调阶段的参数调整,模型会学着慢慢理解这些符号的意思。

       在GPT-2中,要做的是zero-shot,也就是没有任何调整的过程了。这时我们在构造输入时就不能用那些在预训练时没有出现过的特殊符号了。所幸自然语言处理的灵活性很强,我们只要把想要模型做的任务 “告诉” 模型即可,如果有足够量预训练文本支撑,模型想必是能理解我们的要求的。

        举个机器翻译的例子,要用GPT-2做zero-shot的机器翻译,只要将输入给模型的文本构造成translate english to chinese, [englist text], [chinese text] 就好了。比如:translate english to chinese, [machine learning], [机器学习] 。这种做法就是日后鼎鼎大名的prompt

下面还有其他任务的zero-shot形式:

        问答:question answering prompt+文档+问题+答案: answer the question, document, question, answer。

        文档总结:summarization prompt+文档+总结:summarize the document, document, summarization。

zero-shot例子(这就可以看到ChatGPT雏形了): 

三、GPT-3

        GPT-2虽然提出zero-shot,比bert有新意,但是有效性方面不佳。GPT-3考虑few-shot,用少量文本提升有效性。

        GPT-3希望训练出的模型能一定程度上理解语句本身的意思,所以对于下游问题,不更新原训练出模型的参数(不用计算梯度),而是通过改变下游问题的格式,给出提示,让模型能够理解下游任务并做出回答。

3.1 模型结构
  • GPT基于transformer的decoder结构。
  • GPT-3模型和GPT-2一样,但GPT-3应用了Sparse Transformer中的attention结构。

sparse attention与传统self-attention(称为 dense attention)的区别在于:

  • dense attention:每个token之间两两计算attention,复杂度 O(n²)
  • sparse attention:每个token只与其他token的一个子集计算attention,复杂度 O(n*logn)

具体来说,sparse attention 除了相对距离不超过 k 以及相对距离为 k,2k,3k,... 的 token,其他所有 token 的注意力都设为 0,如下图所示:

实际途中sparse attention部分的第二行就是涉及到的attention的token内容,可以看出首先关注了附近四个token,其次是2k,3k距离的token。

使用sparse attention的好处主要有以下两点:

  • 减少注意力层的计算复杂度,节约显存和耗时,从而能够处理更长的输入序列;
  • 具有“局部紧密相关和远程稀疏相关”的特性,对于距离较近的上下文关注更多,对于距离较远的上下文关注较少;
3.2 预训练+few-shot
3.2.1 few-shot

        论文尝试了如下下游任务的评估方法:few-shot learning(10-100个小样本);one-shot learning(1个样本);zero-shot(0个样本);其中few-shot效果最佳。

  • fine-tuning:预训练 + 训练样本计算loss更新梯度,然后预测。会更新模型参数
  • zero-shot:预训练 + task description + prompt,直接预测。不更新模型参数
  • one-shot:预训练 + task description + example + prompt,预测。不更新模型参数
  • few-shot(又称为in-context learning):预训练 + task description + examples + prompt,预测。不更新模型参数

zero-shot、one-shot和few-shot的区别:

其中 Few-shot 也被称为in-context learning,虽然它与fine-tuning一样都需要一些有监督标注数据,但是两者的区别是:

  • fine-tuning基于标注数据对模型参数进行更新,而 in-context learning 使用标注数据时不做任何的梯度回传,模型参数不更新
  •  in-context learning 依赖的数据量(10~100)远远小于fine-tuning一般的数据量;
3.3 GPT-3与GPT-2的区别
  • 模型结构上来看,在GPT-2的基础上,将attention改为了sparse attention。
  • 效果上远超GPT-2,生成的内容更为真实。
  • GPT-3主推few-shot,而GPT-2主推zero-shot。
  • 数据量远大于GPT-2:GPT-3(45T,清洗后570G),GPT-2(40G)。
  • GPT-3最大模型参数为1750亿,GPT-2最大为15亿。
3.4 GPT-3的局限性
  • 数据量和参数量的骤增并没有带来智能的体感。从参数量上看,从GPT2 1.5B到GPT3 175B约116倍参数量的增加,从数据量上看,GPT2 40G到GPT3 570G近15倍训练数据增加,带来的“更”智能,或者简单点说“更few/zero-shot”的能力。
  • GPT-3的训练数据是从互联网上爬取的,因此可能存在一些错误或不准确的数据。
  • GPT-3在处理某些任务时可能会出现错误或不准确的结果,以及不合理或不合逻辑的结果。
  • 文本生成方面;结构和算法上的局限性(采用的是decoder,不像BERT可以向前向后看)。
  • 样本有效性不够 。
  • 语言模型是很均匀的训练下一个词,没有权重。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1511747.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计算机毕业设计 | SSM 在线毕业论文管理 线上考试成绩教务管理系统(附源码)

1, 绪论 研究背景 系统管理也都将通过计算机进行整体智能化操作,对于论文管理系统所牵扯的管理及数据保存都是非常多的,例如管理员;首页、系统用户(管理员、学生、老师)模块管理(指导教师、课…

LLM预备知识、工具篇——LLM+LangChain+web UI的架构解析

目录 【常见名词】一、LLM的低资源模型微调二、向量数据库1、Milvus(v2.1.4):云原生自托管向量数据库(Ubuntu下)1)安装(Docker Compose方式):2)管理工具(仅支持Milvus 2.…

在家不无聊,赚钱有门道:5个正规线上赚钱平台,轻松开启副业

随着网络技术的快速发展,越来越多的人开始寻求通过网络来探索兼职副业的可能性,期望实现额外的收入。在这个过程中,选择一个正规且可靠的线上兼职平台显得尤为关键。 为此小编精心网上盘点了5个正规且靠谱的线上兼职副业平台。这些平台不仅安…

数字证书在网络安全中的重要性与实际应用

数字证书作为一种“电子身份证”,在当今数字化的商业环境中有着广泛的实际应用。它主要用于身份认证、加密通信、电子签名和安全访问控制等方面,为各行各业提供了安全可靠的数字化解决方案。 网络安全领域 在网络通信中,数字证书被广泛应用…

vue的router

目前单页应用(SPA)越来越成为前端主流,单页应用一大特点就是使用前端路由,由前端来直接控制路由跳转逻辑,而不再由后端人员控制,这给了前端更多的自由。 当用户在应用中进行导航时,Vue Router …

详细图解二叉树四种遍历(前序中序后序层次遍历)

文章目录 一.前序遍历常规操作简单方法 二.中序遍历常规操作简单方法 三.后序遍历常规操作 四.层次遍历常规操作 本文中以此二叉树为例 一.前序遍历 常规操作 先根,再左,再右 确定了遍历整体结构: 确定了左子树中的整体结构 继续操作&…

PHP立体安全攻击向量:保护应用程序的关键挑战

PHP立体安全攻击向量:保护应用程序的关键挑战 PHP作为一种广泛使用的服务器端脚本语言,拥有庞大的用户群体和丰富的生态系统。然而,随着互联网的发展,网络安全问题也变得愈发严重。本文将深入探讨PHP的立体安全攻击向量&#xff0…

Python 一步一步教你用pyglet制作汉诺塔游戏(终篇)

目录 汉诺塔游戏 完整游戏 后期展望 汉诺塔游戏 汉诺塔(Tower of Hanoi),是一个源于印度古老传说的益智玩具。这个传说讲述了大梵天创造世界的时候,他做了三根金刚石柱子,并在其中一根柱子上从下往上按照大小顺序摞…

【OpenGL手册11】材质的模型

目录 一、说明二、材质表面和光照三、设置材质四、光的属性五、不同的光源颜色练习 一、说明 在现实世界里,每个物体会对光产生不同的反应。比如,钢制物体看起来通常会比陶土花瓶更闪闪发光,一个木头箱子也不会与一个钢制箱子反射同样程度的…

SQL注入-时间盲注

时间盲注 盲注就是在SQL注入过程中,SQL语句执行后,查询到的数据不能回显到前端页面。此时,我们需要利用一些方法进行判断或者尝试,这个过程称之为盲注。 时间盲注特性 在页面中,不管用户输入什么,数据交互完…

【Linux】文件系统和软硬链接

❤️前言 今天的这篇博客主要是总结前几天学习的关于Linux系统下的文件系统以及软硬链接的内容。希望能对大家有所帮助。 正文 我们今天要学习关于Linux下的文件系统——EXT2的知识,需要注意的是这里的文件和我们以前遇到的那些文件并不相同,以前我们主…

安装配置Spark集群

安装Spark集群主要包括以下步骤: 1、下载Spark安装包,在各节点中安装部署spark集群 2、配置整合 3、启动并测试 下载Spark 可以从官方网站下载合适的版本。当前环境已经提供了安装包,存放在 /opt/software目录下。 在node1节点上安装Sp…

日期问题 刷题笔记

思路 枚举 19600101 到20591231这个区间的数 获得年月日 判断是否合法 如果合法 关于题目给出的日期 有三种可能 年/月/日 日/月/年 月/日/年 判断 是否和题目给出的日期符合 如果符合 输出 闰年{ 1.被4整除不被100整除 2.被400整除} 补位写法“%02d" 如果不…

数据“隐领”未来!【隐私计算实训营】限时免费招募!

数智经济时代,为强化个人隐私信息保护,国家颁布了《国家安全法》、《网络安全法》、《数据安全法》等数据安全法律法规,并严厉处罚数据违规出海、侵权、滥用等问题。数据安全和隐私保护成为大家的共识。隐私计算技术在此背景下应运而生&#…

Linux——线程(3)

在上一篇博客中,我介绍了关于Linux系统中pthread库线程的接口使用以 及对于pthread库的理解。但是我们单单会使用多线程的接口还不够,因为 在使用多线程解决问题的时候,由于进程中的数据对于其中的线程来说大 多是共享的,这也势必…

12双体系Java学习之局部变量和作用域

局部变量 局部变量的作用域 参数变量

找不到mfc140u.dll怎么办?修复缺失mfc140u.dll的多种方案分享

mfc140u.dll文件是一个重要的动态链接库文件,它在Windows操作系统中发挥着关键的作用。由于各种原因,例如应用程序冲突或系统错误等,mfc140u.dll文件有时会出现丢失的情况。一旦发生这种问题,运行依赖此文件的应用程序将无法正常启…

【C语言】初步解决指针疑惑

✨✨ 欢迎大家来到莉莉的博文✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 目录 一.理解内存和编址 1.1理解内存 1.2理解编址 二.指针变量和地址 1.1取地址操作符 三.指针变量和解引用操作符(*) …

设计模式八:观察者模式

文章目录 1、观察者模式2、示例3、spring中的观察者模式3.1 spring观察者模式的使用3.2 spring观察者模式原理解析 1、观察者模式 观察者模式(Observer Design Pattern),也叫做发布订阅模式(Publish-Subscribe Design Pattern)、模…

音视频学习笔记——c++多线程(二)

✊✊✊🌈大家好!本篇文章是多线程系列第二篇文章😇。首先讲解了利用mutex解决多线程数据共享问题,举例更好理解lock和unlock的使用方法,以及错误操作造成的死锁问题,最后讲解了lock_guard与unique_lock使用…