【OpenGL手册11】材质的模型

news2025/1/10 22:21:32

目录

  • 一、说明
  • 二、材质表面和光照
  • 三、设置材质
  • 四、光的属性
  • 五、不同的光源颜色
  • 练习

一、说明

   在现实世界里,每个物体会对光产生不同的反应。比如,钢制物体看起来通常会比陶土花瓶更闪闪发光,一个木头箱子也不会与一个钢制箱子反射同样程度的光。有些物体反射光的时候不会有太多的散射(Scatter),因而产生较小的高光点,而有些物体则会散射很多,产生一个有着更大半径的高光点。如果我们想要在OpenGL中模拟多种类型的物体,我们必须针对每种表面定义不同的材质(Material)属性。

二、材质表面和光照

   在上一节中,我们定义了一个物体和光的颜色,并结合环境光与镜面强度分量,来决定物体的视觉输出。当描述一个表面时,我们可以分别为三个光照分量定义一个材质颜色(Material Color):环境光照(Ambient Lighting)、漫反射光照(Diffuse Lighting)和镜面光照(Specular Lighting)。通过为每个分量指定一个颜色,我们就能够对表面的颜色输出有细粒度的控制了。现在,我们再添加一个反光度(Shininess)分量,结合上述的三个颜色,我们就有了全部所需的材质属性了:

#version 330 core
struct Material {
    vec3 ambient;
    vec3 diffuse;
    vec3 specular;
    float shininess;
}; 
uniform Material material;

   在片段着色器中,我们创建一个结构体(Struct)来储存物体的材质属性。我们也可以把它们储存为独立的uniform值,但是作为一个结构体来储存会更有条理一些。我们首先定义结构体的布局(Layout),然后简单地以刚创建的结构体作为类型声明一个uniform变量。

   如你所见,我们为冯氏光照模型的每个分量都定义一个颜色向量。ambient材质向量定义了在环境光照下这个表面反射的是什么颜色,通常与表面的颜色相同。diffuse材质向量定义了在漫反射光照下表面的颜色。漫反射颜色(和环境光照一样)也被设置为我们期望的物体颜色。specular材质向量设置的是表面上镜面高光的颜色(或者甚至可能反映一个特定表面的颜色)。最后,shininess影响镜面高光的散射/半径。

   有这4个元素定义一个物体的材质,我们能够模拟很多现实世界中的材质。devernay.free.fr中的一个表格展示了一系列材质属性,它们模拟了现实世界中的真实材质。下图展示了几组现实世界的材质参数值对我们的立方体的影响:

在这里插入图片描述

   可以看到,通过正确地指定一个物体的材质属性,我们对这个物体的感知也就不同了。效果非常明显,但是要想获得更真实的效果,我们需要以更复杂的形状替换这个立方体。在模型加载章节中,我们会讨论更复杂的形状。

   搞清楚一个物体正确的材质设定是个困难的工程,这主要需要实验和丰富的经验。用了不合适的材质而毁了物体的视觉质量是件经常发生的事。

   让我们试着在着色器中实现这样的一个材质系统。

三、设置材质

   我们在片段着色器中创建了一个材质结构体的uniform,所以下面我们希望修改一下光照的计算来遵从新的材质属性。由于所有材质变量都储存在一个结构体中,我们可以从uniform变量material中访问它们:

void main()
{    
    // 环境光
    vec3 ambient = lightColor * material.ambient;

    // 漫反射 
    vec3 norm = normalize(Normal);
    vec3 lightDir = normalize(lightPos - FragPos);
    float diff = max(dot(norm, lightDir), 0.0);
    vec3 diffuse = lightColor * (diff * material.diffuse);

    // 镜面光
    vec3 viewDir = normalize(viewPos - FragPos);
    vec3 reflectDir = reflect(-lightDir, norm);  
    float spec = pow(max(dot(viewDir, reflectDir), 0.0), material.shininess);
    vec3 specular = lightColor * (spec * material.specular);  

    vec3 result = ambient + diffuse + specular;
    FragColor = vec4(result, 1.0);
}

   可以看到,我们现在在需要的地方访问了材质结构体中的所有属性,并且这次是根据材质的颜色来计算最终的输出颜色的。物体的每个材质属性都乘上了它们各自对应的光照分量。

   我们现在可以通过设置适当的uniform来设置应用中物体的材质了。GLSL中一个结构体在设置uniform时并无任何区别,结构体只是充当uniform变量们的一个命名空间。所以如果想填充这个结构体的话,我们必须设置每个单独的uniform,但要以结构体名为前缀:

lightingShader.setVec3("material.ambient",  1.0f, 0.5f, 0.31f);
lightingShader.setVec3("material.diffuse",  1.0f, 0.5f, 0.31f);
lightingShader.setVec3("material.specular", 0.5f, 0.5f, 0.5f);
lightingShader.setFloat("material.shininess", 32.0f);

   我们将环境光和漫反射分量设置成我们想要让物体所拥有的颜色,而将镜面分量设置为一个中等亮度的颜色,我们不希望镜面分量过于强烈。我们仍将反光度保持为32。

   现在我们能够轻松地在应用中影响物体的材质了。运行程序,你会得到像这样的结果:

在这里插入图片描述

不过看起来真的不太对劲?

四、光的属性

   这个物体太亮了。物体过亮的原因是环境光、漫反射和镜面光这三个颜色对任何一个光源都全力反射。光源对环境光、漫反射和镜面光分量也分别具有不同的强度。前面的章节中,我们通过使用一个强度值改变环境光和镜面光强度的方式解决了这个问题。我们想做类似的事情,但是这次是要为每个光照分量分别指定一个强度向量。如果我们假设lightColor是vec3(1.0),代码会看起来像这样:

vec3 ambient  = vec3(1.0) * material.ambient;
vec3 diffuse  = vec3(1.0) * (diff * material.diffuse);
vec3 specular = vec3(1.0) * (spec * material.specular);

   所以物体的每个材质属性对每一个光照分量都返回了最大的强度。对单个光源来说,这些vec3(1.0)值同样可以对每种光源分别改变,而这通常就是我们想要的。现在,物体的环境光分量完全地影响了立方体的颜色,可是环境光分量实际上不应该对最终的颜色有这么大的影响,所以我们会将光源的环境光强度设置为一个小一点的值,从而限制环境光颜色:

vec3 ambient = vec3(0.1) * material.ambient;

   我们可以用同样的方式影响光源的漫反射和镜面光强度。这和我们在上一节中所做的极为相似,你可以认为我们已经创建了一些光照属性来影响各个光照分量。我们希望为光照属性创建类似材质结构体的东西:

struct Light {
    vec3 position;

    vec3 ambient;
    vec3 diffuse;
    vec3 specular;
};

uniform Light light;

   一个光源对它的ambient、diffuse和specular光照分量有着不同的强度。环境光照通常被设置为一个比较低的强度,因为我们不希望环境光颜色太过主导。光源的漫反射分量通常被设置为我们希望光所具有的那个颜色,通常是一个比较明亮的白色。镜面光分量通常会保持为vec3(1.0),以最大强度发光。注意我们也将光源的位置向量加入了结构体。

   和材质uniform一样,我们需要更新片段着色器:

vec3 ambient  = light.ambient * material.ambient;
vec3 diffuse  = light.diffuse * (diff * material.diffuse);
vec3 specular = light.specular * (spec * material.specular);

   我们接下来在应用中设置光照强度:

lightingShader.setVec3("light.ambient",  0.2f, 0.2f, 0.2f);
lightingShader.setVec3("light.diffuse",  0.5f, 0.5f, 0.5f); // 将光照调暗了一些以搭配场景
lightingShader.setVec3("light.specular", 1.0f, 1.0f, 1.0f); 

   现在我们已经调整了光照对物体材质的影响,我们得到了一个与上一节很相似的视觉效果。但这次我们有了对光照和物体材质的完全掌控:

在这里插入图片描述

   改变物体的视觉效果现在变得相对容易了。让我们做点更有趣的事!

五、不同的光源颜色

   到目前为止,我们都只对光源设置了从白到灰到黑范围内的颜色,这样只会改变物体各个分量的强度,而不是它的真正颜色。由于现在能够非常容易地访问光照的属性了,我们可以随着时间改变它们的颜色,从而获得一些非常有意思的效果。由于所有的东西都在片段着色器中配置好了,修改光源的颜色非常简单,并立刻创造一些很有趣的效果:
在这里插入图片描述

   你可以看到,不同的光照颜色能够极大地影响物体的最终颜色输出。由于光照颜色能够直接影响物体能够反射的颜色(回想颜色这一节),这对视觉输出有着显著的影响。

   我们可以利用sin和glfwGetTime函数改变光源的环境光和漫反射颜色,从而很容易地让光源的颜色随着时间变化:

glm::vec3 lightColor;
lightColor.x = sin(glfwGetTime() * 2.0f);
lightColor.y = sin(glfwGetTime() * 0.7f);
lightColor.z = sin(glfwGetTime() * 1.3f);

glm::vec3 diffuseColor = lightColor   * glm::vec3(0.5f); // 降低影响
glm::vec3 ambientColor = diffuseColor * glm::vec3(0.2f); // 很低的影响

lightingShader.setVec3("light.ambient", ambientColor);
lightingShader.setVec3("light.diffuse", diffuseColor);

   尝试并实验一些光照和材质值,看看它们是怎样影响视觉输出的。你可以在这里找到应用的源码。

练习

你能做到这件事吗,改变光照颜色导致改变光源立方体的颜色?
你能像教程一开始那样,通过定义相应的材质来模拟现实世界的物体吗?注意材质表格中的环境光值与漫反射值不一样,它们没有考虑光照的强度。要想正确地设置它们的值,你需要将所有的光照强度都设置为vec3(1.0),这样才能得到一致的输出:参考解答:青色塑料(Cyan Plastic)容器。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1511730.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

SQL注入-时间盲注

时间盲注 盲注就是在SQL注入过程中,SQL语句执行后,查询到的数据不能回显到前端页面。此时,我们需要利用一些方法进行判断或者尝试,这个过程称之为盲注。 时间盲注特性 在页面中,不管用户输入什么,数据交互完…

【Linux】文件系统和软硬链接

❤️前言 今天的这篇博客主要是总结前几天学习的关于Linux系统下的文件系统以及软硬链接的内容。希望能对大家有所帮助。 正文 我们今天要学习关于Linux下的文件系统——EXT2的知识,需要注意的是这里的文件和我们以前遇到的那些文件并不相同,以前我们主…

安装配置Spark集群

安装Spark集群主要包括以下步骤: 1、下载Spark安装包,在各节点中安装部署spark集群 2、配置整合 3、启动并测试 下载Spark 可以从官方网站下载合适的版本。当前环境已经提供了安装包,存放在 /opt/software目录下。 在node1节点上安装Sp…

日期问题 刷题笔记

思路 枚举 19600101 到20591231这个区间的数 获得年月日 判断是否合法 如果合法 关于题目给出的日期 有三种可能 年/月/日 日/月/年 月/日/年 判断 是否和题目给出的日期符合 如果符合 输出 闰年{ 1.被4整除不被100整除 2.被400整除} 补位写法“%02d" 如果不…

数据“隐领”未来!【隐私计算实训营】限时免费招募!

数智经济时代,为强化个人隐私信息保护,国家颁布了《国家安全法》、《网络安全法》、《数据安全法》等数据安全法律法规,并严厉处罚数据违规出海、侵权、滥用等问题。数据安全和隐私保护成为大家的共识。隐私计算技术在此背景下应运而生&#…

Linux——线程(3)

在上一篇博客中,我介绍了关于Linux系统中pthread库线程的接口使用以 及对于pthread库的理解。但是我们单单会使用多线程的接口还不够,因为 在使用多线程解决问题的时候,由于进程中的数据对于其中的线程来说大 多是共享的,这也势必…

12双体系Java学习之局部变量和作用域

局部变量 局部变量的作用域 参数变量

找不到mfc140u.dll怎么办?修复缺失mfc140u.dll的多种方案分享

mfc140u.dll文件是一个重要的动态链接库文件,它在Windows操作系统中发挥着关键的作用。由于各种原因,例如应用程序冲突或系统错误等,mfc140u.dll文件有时会出现丢失的情况。一旦发生这种问题,运行依赖此文件的应用程序将无法正常启…

【C语言】初步解决指针疑惑

✨✨ 欢迎大家来到莉莉的博文✨✨ 🎈🎈养成好习惯,先赞后看哦~🎈🎈 目录 一.理解内存和编址 1.1理解内存 1.2理解编址 二.指针变量和地址 1.1取地址操作符 三.指针变量和解引用操作符(*) …

设计模式八:观察者模式

文章目录 1、观察者模式2、示例3、spring中的观察者模式3.1 spring观察者模式的使用3.2 spring观察者模式原理解析 1、观察者模式 观察者模式(Observer Design Pattern),也叫做发布订阅模式(Publish-Subscribe Design Pattern)、模…

音视频学习笔记——c++多线程(二)

✊✊✊🌈大家好!本篇文章是多线程系列第二篇文章😇。首先讲解了利用mutex解决多线程数据共享问题,举例更好理解lock和unlock的使用方法,以及错误操作造成的死锁问题,最后讲解了lock_guard与unique_lock使用…

LEETCODE3

法一:记忆化递归 int climbStairsRecursive(int n, int* memo) {if (n < 2) {return n;}if (memo[n] > 0) {return memo[n];}memo[n] climbStairsRecursive(n - 1, memo) climbStairsRecursive(n - 2, memo);return memo[n]; }int climbStairs(int n) {int* memo (in…

QML 控件添加键盘事件

在QML中&#xff0c;可以使用Keys类型来处理键盘事件。以下是一个简单的示例&#xff0c;演示如何在QML控件中添加键盘事件&#xff1a; import QtQuick 2.12 import QtQuick.Window 2.12Window {visible: truewidth: 640height: 480title: qsTr("Hello World")Recta…

Linux的MySQL安装与卸载

安装与卸载 卸载安装配置yum源安装MySQL 声明一下本人用的Linux版本是CentOs7.9版本的。 卸载 如果我们用的云服务器&#xff0c;云服务器可能会自带MySQL或者mariadb&#xff08;其实就是MySQL的一个开源分支&#xff09;&#xff0c;如果我们不想用自带的&#xff0c;需要先…

理论学习 BatchNorm2d

import torch import torch.nn as nn# With Learnable Parameters m nn.BatchNorm2d(100) # Without Learnable Parameters m nn.BatchNorm2d(100, affineFalse) input torch.randn(20, 100, 35, 45) output m(input)print(output) print(output.shape)这段代码展示了如何使…

mybatis-plus-generator 使用 velocity 生成前后台代码

操作步骤 1&#xff09;准备mybatis-plus 生成代码的 vm文件 2&#xff09;添加依赖 mybatis-plus-generator 代码生成器的依赖 3&#xff09;执行工具方法生成代码 1、准备 mybatis-plus 生成代码的 vm文件 1&#xff09;找vm模板 去工程的 external Libraries 找到 mybati…

ES6基础6

Promise对象 Promise的含义 所谓Promise&#xff0c;简单说就是一个容器&#xff0c;里面保存着某个未来才会结束的事件&#xff08;通常是一个异步操作&#xff09;的结果。从语法上说&#xff0c;Promise是一个对象&#xff0c;从它可以获取异步操作的消息。Promise提供统一的…

深度学习笔记_8隐马尔可夫模型(HMM)

隐马尔可夫模型(Hidden Markov Model, HMM)是一种统计模型&#xff0c;在语音识别、行为识别、NLP、故障诊断等领域具有高效的性能。 HMM是关于时序的概率模型&#xff0c;描述一个含有未知参数的马尔可夫链所生成的不可观测的状态随机序列&#xff0c;再由各个状态生成观测随…

设计模式 -- 1:简单工厂模式

目录 代码记录代码部分 代码记录 设计模式的代码注意要运用到面向对象的思想 考虑到紧耦合和松耦合 把具体的操作类分开 不让其互相影响&#xff08;注意这点&#xff09; 下面是UML类图 代码部分 #include <iostream> #include <memory> // 引入智能指针的头文…

linux 模拟shell

&#x1f493;博主CSDN主页:麻辣韭菜-CSDN博客&#x1f493;   ⏩专栏分类&#xff1a;http://t.csdnimg.cn/G90eI⏪   &#x1f69a;代码仓库:Linux: Linux日常代码练习&#x1f69a;   &#x1f339;关注我&#x1faf5;带你学习更多Linux知识   &#x1f51d;&#x1f5…