2025年第三届“华数杯”国际赛A题解题思路与代码(Matlab版)

news2025/1/11 20:53:04

游泳竞技策略优化模型代码详解(MATLAB版)

第一题:速度优化模型

本部分使用MATLAB实现游泳运动员在不同距离比赛中的速度分配策略优化。

1. 模型概述

模型包含三个主要文件:

  • speed_optimization.m: 核心优化类
  • plot_speeds.m: 可视化函数
  • main.m: 主程序

2. 代码实现

2.1 速度优化模型 (speed_optimization.m)
classdef speed_optimization
    properties
        distance        % 比赛距离
        initial_energy  % 初始能量
        segments       % 分段数
        max_speed      % 最大速度
    end
    
    methods
        function obj = speed_optimization(distance, initial_energy)
            % 构造函数
            obj.distance = distance;
            obj.initial_energy = initial_energy;
            obj.segments = 10;
            % 根据距离设置最大速度
            if distance <= 50
                obj.max_speed = 2.2;
            elseif distance <= 100
                obj.max_speed = 2.0;
            else
                obj.max_speed = 1.8;
            end
        end
        
        function energy = energy_consumption(obj, speed)
            % 能量消耗模型
            k = 0.1;  % 能量消耗系数
            energy = k * speed.^3;
        end
        
        function [optimal_speeds, total_time] = optimize(obj)
            % 优化速度分配
            
            % 初始猜测
            x0 = ones(1, obj.segments) * obj.max_speed * 0.9;
            
            % 约束条件
            lb = ones(1, obj.segments) * obj.max_speed * 0.7;  % 下界
            ub = ones(1, obj.segments) * obj.max_speed;        % 上界
            
            % 优化选项
            options = optimoptions('fmincon', 'Display', 'off');
            
            % 优化求解
            [optimal_speeds, total_time] = fmincon(@(x)obj.objective(x), x0, ...
                [], [], [], [], lb, ub, @(x)obj.constraints(x), options);
        end
        
        function f = objective(obj, speeds)
            % 目标函数:最小化总时间
            segment_distance = obj.distance / obj.segments;
            f = sum(segment_distance ./ speeds);
        end
        
        function [c, ceq] = constraints(obj, speeds)
            % 约束条件:能量限制
            segment_distance = obj.distance / obj.segments;
            total_energy = sum(obj.energy_consumption(speeds) .* segment_distance);
            
            c = total_energy - obj.initial_energy;  % 能量约束
            ceq = [];  % 无等式约束
        end
    end
end
2.2 可视化函数 (plot_speeds.m)
function plot_speeds(distances)
    % 绘制不同距离的最优速度分配
    
    % 设置中文字体
    set(0, 'DefaultAxesFontName', 'SimHei')
    set(0, 'DefaultTextFontName', 'SimHei')
    
    figure('Position', [100, 100, 800, 400]);
    colors = {'r', 'b', 'g'};
    
    for i = 1:length(distances)
        % 创建优化器并求解
        optimizer = speed_optimization(distances(i), 100);
        [optimal_speeds, ~] = optimizer.optimize();
        
        % 绘制速度曲线
        segments = linspace(0, distances(i), length(optimal_speeds));
        plot(segments, optimal_speeds, [colors{i}, '-o'], ...
            'DisplayName', [num2str(distances(i)), '米']);
        hold on;
    end
    
    xlabel('距离 (m)');
    ylabel('速度 (m/s)');
    title('不同距离项目的最优速度分配策略');
    legend('show');
    grid on;
end
2.3 主程序 (main.m)
% 主程序:分析不同距离的最优速度分配

% 分析不同距离
distances = [50, 100, 200];
plot_speeds(distances);

% 分析100米的详细数据
optimizer = speed_optimization(100, 100);
[optimal_speeds, total_time] = optimizer.optimize();

% 显示结果
fprintf('\n100米比赛最优速度分配方案:\n');
for i = 1:length(optimal_speeds)
    fprintf('第%d段: %.2f米/秒\n', i, optimal_speeds(i));
end
fprintf('\n预计完成时间: %.2f秒\n', total_time);

3. 代码详解

3.1 速度优化模型特点
  1. 面向对象设计

    • 使用MATLAB的类定义
    • 清晰的属性和方法组织
    • 模块化的代码结构
  2. 优化算法

    • 使用 fmincon 进行约束优化
    • 设置合理的边界条件
    • 考虑能量约束
  3. 能量模型

    • 基于速度的三次方关系
    • 考虑距离因素
    • 添加合理的系数
3.2 可视化特点
  1. 图形设置

    • 支持中文显示
    • 合理的图形尺寸
    • 清晰的图例和标签
  2. 多距离对比

    • 使用不同颜色区分
    • 添加图例说明
    • 网格辅助查看

4. 与Python版本的主要区别

  1. 优化器选择

    • MATLAB使用 fmincon
    • Python使用 scipy.optimize.minimize
  2. 语法特点

    • MATLAB的矩阵运算更直观
    • 类定义语法略有不同
    • 绘图函数的调用方式不同
  3. 性能特点

    • MATLAB的优化工具箱更专业
    • 矩阵运算性能更好
    • 可视化效果更专业

5. 运行结果

模型运行后可以得到:

  1. 不同距离的速度分配曲线
  2. 100米比赛的具体速度数据
  3. 预计完成时间

这些结果可以帮助:

  • 制定训练计划
  • 优化比赛策略
  • 分析能量分配

6. 总结

MATLAB版本的实现具有以下优势:

  1. 专业的优化工具支持
  2. 优秀的矩阵运算性能
  3. 专业的可视化效果

通过这个模型,我们可以为运动员提供科学的训练和比赛建议,帮助他们在比赛中取得更好的成绩。


获取完整代码

如果您对第二题"竞技策略分析"和第三题"接力赛追赶策略"的MATLAB实现感兴趣,请访问:

  • 获取链接(内容实时更新):2025年第三届“华数杯”国际大学生数学建模竞赛A题完整代码【含Matlab/Python版本】

完整代码包含:

  1. 详细的代码注释
  2. 运行示例
  3. 参数调优建议
  4. 技术文档

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/2275106.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Redis数据库——Redis快的原因

本文详细介绍redis为什么这么快的原因&#xff0c;这里是本系列文章的总结篇&#xff08;后面会补充一些内容&#xff0c;或者在原文上进行更新迭代&#xff09;&#xff0c;将从各方面出发解释为什么redis快&#xff0c;受欢迎的原因。 文章目录 内存内存数据库预分配内存 数据…

排序:插入、选择、交换、归并排序

排序 &#xff1a;所谓排序&#xff0c;就是使一串记录&#xff0c;按照其中的某个或某些关键字的大小&#xff0c;递增或递减的排列起来的操作。 稳定性 &#xff1a;假定在待排序的记录序列中&#xff0c;存在多个具有相同的关键字的记录&#xff0c;若经过排序&#xff0c;…

RocketMQ 和 Kafka 有什么区别?

目录 RocketMQ 是什么? RocketMQ 和 Kafka 的区别 在架构上做减法 简化协调节点 简化分区 Kafka 的底层存储 RocketMQ 的底层存储 简化备份模型 在功能上做加法 消息过滤 支持事务 加入延时队列 加入死信队列 消息回溯 总结 来源:面试官:RocketMQ 和 Kafka 有…

赛车微型配件订销管理系统(源码+lw+部署文档+讲解),源码可白嫖!

摘要 赛车微型配件行业通常具有产品多样性、需求不确定性、市场竞争激烈等特点。配件供应商需要根据市场需求及时调整产品结构和库存&#xff0c;同时要把握好供应链管理和销售渠道。传统的赛车微型配件订销管理往往依赖于人工经验和简单的数据分析&#xff0c;效率低下且容易…

公众号如何通过openid获取unionid

通过接口 https://api.weixin.qq.com/cgi-bin/user/info?access_tokenxxxxxxx&langzh_CN 返回的数据如下&#xff1a; 前提是必须绑定 微信开放平台 token如何获取呢 代码如下&#xff1a; String tokenUrl "https://api.weixin.qq.com/cgi-bin/token"; …

半导体数据分析: 玩转WM-811K Wafermap 数据集(二) AI 机器学习

一、数据集回顾 前面我们已经基本了解了WM-811K Wafermap 数据集&#xff0c;并通过几段代码&#xff0c;熟悉了这个数据集的数据结构&#xff0c;这里为了方便各位连续理解&#xff0c;让我们再回顾一下&#xff1a; WM-811K Wafermap 数据集是一个在半导体制造领域广泛使用…

协同过滤算法私人诊所系统|Java|SpringBoot|VUE|

【技术栈】 1⃣️&#xff1a;架构: B/S、MVC 2⃣️&#xff1a;系统环境&#xff1a;Windowsh/Mac 3⃣️&#xff1a;开发环境&#xff1a;IDEA、JDK1.8、Maven、Mysql5.7 4⃣️&#xff1a;技术栈&#xff1a;Java、Mysql、SpringBoot、Mybatis-Plus、VUE、jquery,html 5⃣️…

Python基于YOLOv8和OpenCV实现车道线和车辆检测

使用YOLOv8&#xff08;You Only Look Once&#xff09;和OpenCV实现车道线和车辆检测&#xff0c;目标是创建一个可以检测道路上的车道并识别车辆的系统&#xff0c;并估计它们与摄像头的距离。该项目结合了计算机视觉技术和深度学习物体检测。 1、系统主要功能 车道检测&am…

nexus搭建maven私服

说到maven私服每个公司都有&#xff0c;比如我上一篇文章介绍的自定义日志starter&#xff0c;就可以上传到maven私服供大家使用&#xff0c;每次更新只需deploy一下就行&#xff0c;以下就是本人搭建私服的步骤 使用docker安装nexus #拉取镜像 docker pull sonatype/nexus3:…

MiniMind - 从0训练语言模型

文章目录 一、关于 MiniMind &#x1f4cc;项目包含 二、&#x1f4cc; Environment三、&#x1f4cc; Quick Start Test四、&#x1f4cc; Quick Start Train0、克隆项目代码1、环境安装2、如果你需要自己训练3、测试模型推理效果 五、&#x1f4cc; Data sources1、分词器&am…

Postman接口测试基本操作

&#x1f345; 点击文末小卡片 &#xff0c;免费获取软件测试全套资料&#xff0c;资料在手&#xff0c;涨薪更快 Postman-获取验证码 需求&#xff1a;使用Postman访问验证码接口&#xff0c;并查看响应结果。 地址&#xff1a;http://kdtx-test.itheima.net/api/captchaIm…

基于Python实现的通用小规模搜索引擎

基于Python实现的通用小规模搜索引擎 1.项目简介 1.1背景 《信息内容安全》网络信息内容获取技术课程项目设计 一个至少能支持10个以上网站的爬虫程序&#xff0c;且支持增量式数据采集;并至少采集10000个实际网页;针对采集回来的网页内容&#xff0c; 能够实现网页文本的分…

查找路由器的管理后台ip【通用找IP】

需求&#xff1a; 刚刚搞了个【小米】路由器&#xff0c;我想进路由的管理后台&#xff0c;提示&#xff1a;安装xx的路由管家&#xff0c;我不想安装 但是无法找到这个管理后台。 而且我是用这个路由作为中继&#xff0c;那么这个路由的ip就会经常更换 尝试通过网上搜索引擎来…

混合专家模型 (MoE)笔记摘要

ref&#xff1a; https://huggingface.co/blog/zh/moe#%E4%BB%80%E4%B9%88%E6%98%AF%E6%B7%B7%E5%90%88%E4%B8%93%E5%AE%B6%E6%A8%A1%E5%9E%8B 简短总结 混合专家模型 (MoEs): 与稠密模型相比&#xff0c; 预训练速度更快 与具有相同参数数量的模型相比&#xff0c;具有更快的…

01 Oracle自学环境搭建

1 Oracle12C安装 1.1 下载 官网地址&#xff1a;https://www.oracle.com/ 解压安装包 运行安装程序 1.2 安装 配置安全更新 软件更新 安装选项 系统类 Oracle主目录用户选择 使用现有windows用户&#xff1a;如果选择该项&#xff0c;则需要指定没有管理权限的用户。 创建新Wi…

【Python】Python与C的区别

文章目录 语句结束符代码块表示变量声明函数定义注释格式Python的标识符数据输入input()函数数据输出print()函数 语句结束符 C 语言 C 语言中每条语句必须以分号;结束。例如&#xff0c;int a 10;、printf("Hello, World!");。分号是语句的一部分&#xff0c;用于…

安科瑞 Acrel-1000DP 分布式光伏监控系统在工业厂房分布式光伏发电项目中的应用

吕梦怡 18706162527 摘 要&#xff1a;常规能源以煤、石油、天然气为主&#xff0c;不仅资源有限&#xff0c;而且会造成严重的大气污染&#xff0c;开发清洁的可再生能源已经成为当今发展的重要任务&#xff0c;“节能优先&#xff0c;效率为本”的分布式发电能源符合社会发…

逆向 易九批 最新版 爬虫逆向 x-sign ......

声明 本文章中所有内容仅供学习交流&#xff0c;抓包内容、敏感网址、数据接口均已做脱敏处理&#xff0c;严禁用于商业用途和非法用途&#xff0c;否则由此产生的一切后果均与作者无关&#xff0c;若有侵权&#xff0c;请联系我立即删除&#xff01; # 欢迎交流 wjxch1004

TensorFlow Quantum快速编程(高级篇)

五、实战:量子分类器应用 5.1 数据准备 在实战构建量子分类器时,数据准备是基石环节。选用鸢尾花数据集,这一经典数据集在机器学习领域应用广泛,其涵盖了三种鸢尾花品种的样本,每个样本包含花萼长度、花萼宽度、花瓣长度、花瓣宽度四个特征。鉴于本次构建二分类量子分类…

maven高级(day15)

Maven 是一款构建和管理 Java 项目的工具 分模块设计与开发 所谓分模块设计&#xff0c;顾名思义指的就是我们在设计一个 Java 项目的时候&#xff0c;将一个 Java 项目拆分成多 个模块进行开发。 分模块设计我们在进行项目设计阶段&#xff0c;就可以将一个大的项目拆分成若干…