吴恩达机器学习-可选实验室:可选实验:使用逻辑回归进行分类(Classification using Logistic Regression)

news2025/1/16 8:16:51

在本实验中,您将对比回归和分类。

import numpy as np
%matplotlib widget
import matplotlib.pyplot as plt
from lab_utils_common import dlc, plot_data
from plt_one_addpt_onclick import plt_one_addpt_onclick
plt.style.use('./deeplearning.mplstyle')

jupyter notebook 目录中必须包含如下文件
在这里插入图片描述

分类问题

分类问题的例子比如:将电子邮件识别为垃圾邮件或非垃圾邮件,或确定肿瘤是恶性还是良性。特别地,这些是有两种可能结果的二元分类的例子。结果可以用“积极/消极”对来描述,比如“是”/“否”、“真/假”或“1”/“0”。分类数据集的图通常使用符号来表示示例的结果。在下面的图表中,“X”表示正数值,而“O”表示负结果。

x_train = np.array([0., 1, 2, 3, 4, 5])
y_train = np.array([0,  0, 0, 1, 1, 1])
X_train2 = np.array([[0.5, 1.5], [1,1], [1.5, 0.5], [3, 0.5], [2, 2], [1, 2.5]])
y_train2 = np.array([0, 0, 0, 1, 1, 1])
pos = y_train == 1
neg = y_train == 0

fig,ax = plt.subplots(1,2,figsize=(8,3))
#plot 1, single variable
ax[0].scatter(x_train[pos], y_train[pos], marker='x', s=80, c = 'red', label="y=1")
ax[0].scatter(x_train[neg], y_train[neg], marker='o', s=100, label="y=0", facecolors='none', 
              edgecolors=dlc["dlblue"],lw=3)

ax[0].set_ylim(-0.08,1.1)
ax[0].set_ylabel('y', fontsize=12)
ax[0].set_xlabel('x', fontsize=12)
ax[0].set_title('one variable plot')
ax[0].legend()

#plot 2, two variables
plot_data(X_train2, y_train2, ax[1])
ax[1].axis([0, 4, 0, 4])
ax[1].set_ylabel('$x_1$', fontsize=12)
ax[1].set_xlabel('$x_0$', fontsize=12)
ax[1].set_title('two variable plot')
ax[1].legend()
plt.tight_layout()
plt.show()

在这里插入图片描述

第二个图像的绘制是通过调用了名为 plot_data 的函数来完成的,因此,即使在主代码中没有明确对第二个图像的数据进行分类设置,但是通过 plot_data 函数内部的处理,可能会根据数据的标签值将其显示为不同的颜色。这样就解释了为什么即使没有在第二个图像的绘制部分设置颜色,最终的图像中仍然呈现了红色和蓝色的情况。

在上面的图表中:在单变量图中,阳性结果显示为红色的“X”和y=1。阴性结果为蓝色“O”,位于y=0处。回想一下,在线性回归的情况下,y不会被限制为两个值,而是可以是任何值。在双变量图中,y轴不可用。阳性结果用红色的“X”表示,阴性结果用蓝色的“O”表示。回想一下,在多变量线性回归的情况下,y不会是限于两个值和一个类似的情节将是三维的。

线性回归法

在前一周,我们应用了线性回归来构建预测模型。让我们用课上讲过的简单例子来试试这个方法。该模型将根据肿瘤大小预测肿瘤是良性还是恶性。试试下面的方法:点击“运行线性回归”以找到给定数据的最佳线性回归模型。注意,得到的线性模型不能很好地匹配数据。改善结果的一种选择是应用阈值。勾选“切换0.5阈值”上的复选框,以显示应用阈值时的预测结果。这些预测看起来不错,预测与数据相符。现在,在最右边的大肿瘤大小范围内(接近10)添加更多的“恶性”数据点,并重新运行线性回归。现在,模型预测了更大的肿瘤,但是x=3的数据点被错误地预测了!要清除/更新plot,请重新运行包含plot命令的单元格。

w_in = np.zeros((1))
b_in = 0
plt.close('all') 
addpt = plt_one_addpt_onclick( x_train,y_train, w_in, b_in, logistic=False)

在这里插入图片描述
在这里插入图片描述

上面的例子表明,线性模型不足以对分类数据进行建模。该模型可以按照以下实验的描述进行扩展。

恭喜

在这个实验中,你:探索分类数据集和绘图确定线性回归不足以进行逻辑回归。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1506881.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

计算机组成原理实验报告1 | 实验1.1 运算器实验(键盘方式)

本文整理自博主大学本科《计算机组成原理》课程自己完成的实验报告。 —— *实验环境为学校机房实验箱。 目录 一、实验目的 二、实验内容 三、实验步骤及实验结果 Ⅰ、单片机键盘操作方式实验 1、实验连线(键盘实验) 2、实验过程 四、实验结果的…

C语言:深入补码计算原理

C语言:深入补码计算原理 有符号整数存储原码、反码、补码转换规则数据与内存的关系 补码原理 有符号整数存储 原码、反码、补码 有符号整数的2进制表示方法有三种,即原码、反码和补码 三种表示方法均有符号位和数值位两部分,符号位用0表示“…

25改考408最新资讯!拷贝

东北大学 东北大学计算机考研全面改考408 东北大学计算机学院官网:http://www.cse.neu.edu.cn/6274/list.htm 东北大学计算机考研全面改考408 公告原文 东北大学计算机科学与工程学院关于调整2025年硕士研究生招生计算机科学与技术、计算机技术、人工智能专业初试…

NBlog整合OSS图库

NBlog部署维护流程记录(持续更新):https://blog.csdn.net/qq_43349112/article/details/136129806 由于项目是fork的,所以我本身并不清楚哪里使用了图床,因此下面就是我熟悉项目期间边做边调整的。 目前已经调整的功能…

机器学习评价指标(分类、目标检测)

https://zhuanlan.zhihu.com/p/364253497https://zhuanlan.zhihu.com/p/46714763https://blog.csdn.net/u013250861/article/details/123029585 1.1 混淆矩阵 在介绍评价指标之前,我们首先要介绍一下混淆矩阵(confusion matrix)。混淆矩阵…

数据结构小记【Python/C++版】——B树篇

一,基础概念 B树也是一种自平衡搜索树,常用于数据库中索引的实现。 B树和AVL树的区别在于: B树是一种多路平衡查找树,B树的节点可以有两个以上的子节点(AVL树是二叉树,最多只能有两个子节点)。 B树的每个节点可以存…

什么是SSL洪水攻击,有办法处理吗?

相信不少人曾遇到过或是听说过DDOS攻击,分布式拒绝服务(DDoS)攻击指多个系统联合进行攻击,从而使目标机器停止提供服务或资源访问。大致来说,就是让多台电脑向一台服务器发送大量的流量,直到该服务器崩溃掉…

利用GPT开发应用007:警惕人工智能幻觉,局限与注意事项

文章目录 一、人工智能幻觉二、计算案例三、斑马案例四、总结 正如您所见,一个大型语言模型通过基于给定的输入提示逐个预测下一个单词(或标记)来生成答案。在大多数情况下,模型的输出对您的任务来说是相关的,并且完全…

解决Ubuntu 16.04/18.04 图形化界面异常、鼠标光标消失、鼠标变成叉叉等问题

bug场景: 一切从一次换源说起…叭叭叭 这篇文章解决的问题: 1.换源,默认源太慢,换成可用的阿里云的源 2.apt-get failed to …问题 3.图形化异常问题 4.get unmet dependence 问题 5. 鼠标光标消失和鼠标变成叉叉问题。 解决方…

【计算机网络_应用层】https协议——加密和窃密的攻防

文章目录 1.https协议的介绍2. 加密和解密2.1 什么是加密2.2 常见的加密方式2.2.1 对称加密2.2.2 非对称加密 2.3 数据摘要(数据指纹)2.4 数字签名 3. https协议的加密和解密方案一:使用对称加密(❌)方案二&#xff1a…

搜维尔科技:动作捕捉与数字时尚:Wondar Studios欧莱雅项目

来自意大利的Wondar Studios工作室,是一家制作与动作捕捉技术相关软件和内容的公司,其出品的三维角色动画均由专业动捕系统真实录制制作。 我们很高兴与大家分享Wondar Studios最新的动捕项目,该项目带来了身临其境的虚拟现实体验。他们与巴…

加密流量分类torch实践4:TrafficClassificationPandemonium项目更新

加密流量分类torch实践4:TrafficClassificationPandemonium项目更新 更新日志 代码已经推送开源至露露云的github,如果能帮助你,就给鼠鼠点一个star吧!!! 3/10号更新 流量预处理更新 增加了基于splitCa…

JavaScript基础6之执行上下文、作用域链、函数创建、函数激活、checkScope的执行过程、闭包、this

JavaScript基础 执行上下文执行上下文中的属性变量对象全局上下文的变量对象函数上下文执行过程进入执行上下文代码执行思考题 作用域链函数创建函数激活checkScope的执行过程总结 闭包分析闭包 this 执行上下文 执行上下文中的属性 每一个执行上下文都有三个核心属性 变量对…

03-安装配置jenkins

一、安装部署jenkins 1,上传软件包 为了方便学习,本次给大家准备了百度云盘的安装包 链接:https://pan.baidu.com/s/1_MKFVBdbdFaCsOTpU27f7g?pwdq3lx 提取码:q3lx [rootjenkins ~]# rz -E [rootjenkins ~]# yum -y localinst…

Linux学习:权限

目录 1. shell命令的工作原理与存在意义1.1 shell命令解释器存在的意义1.2 shell解释器的工作原理 2. Linux操作系统:用户2.1 什么是用户2.2 用户的切换操作2.3 用户权限划分的意义 3. Linux中权限的种类和意义3.1 什么是权限3.2 sudo指令与短暂提权 4. 文件类型与文…

03-快速上手RabbitMQ的5种消息模型

RabbitMQ RabbitMQ是基于Erlang语言开发的开源消息通信中间件,有几个常见概念 connections(连接): 将来publisher(消息的发送者)或者consumer(消息的接收者)都需要先与MQ建立连接 channel(通道): 建立连接后需要创建通道,生产者和消费者就是基于通道完成消息的发送和接收 ex…

网络安全:OpenEuler 部署 jumpserver 堡垒机

目录 一、实验 1.环境 2.OpenEuler 部署 jumpserver 堡垒机 3.OpenEuler 使用 jumpserver 堡垒机(管理Linux) 4.OpenEuler 使用 jumpserver 堡垒机(管理Windows) 二、问题 1.jumpserver 安装报错 一、实验 1.环境 &#x…

linux paddle For C++环境搭建

paddle介绍 Paddle是类似tesseract的文字识别ocr。因为tesseract-ocr的中文识别效果不好。因此才准备安装Paddle。Paddle最方便的安装方式的使用Python的包管理安装。pip3 install paddlepaddle。但我使用了一下感觉还是用C更加方便,QT OpenCV Paddle应当还不错。…

[Spark SQL]Spark SQL读取Kudu,写入Hive

SparkUnit Function:用于获取Spark Session package com.example.unitlimport org.apache.spark.sql.SparkSessionobject SparkUnit {def getLocal(appName: String): SparkSession {SparkSession.builder().appName(appName).master("local[*]").getO…

1.下载安装ESP32开发环境ESP-IDE

ESP32简介 ESP32介绍 说到ESP32,首先ESP32不是一个芯片,ESP32是一个系列芯片, 是乐鑫自主研发的一系列芯片微控制器。它主要的功能就是支持WiFi和蓝牙, ESP32指的是ESP32裸芯片。但是,“ESP32”一词通常指ESP32系列芯…