seq2seq翻译实战-Pytorch复现

news2024/10/6 2:19:59
🍨 本文为[🔗365天深度学习训练营学习记录博客 🍦 参考文章:365天深度学习训练营 🍖 原作者:[K同学啊 | 接辅导、项目定制]\n🚀 文章来源:[K同学的学习圈子](https://www.yuque.com/mingtian-fkmxf/zxwb45)

一、前期准备 

from __future__ import unicode_literals, print_function, division
from io import open
import unicodedata
import string
import re
import random

import torch
import torch.nn as nn
from torch import optim
import torch.nn.functional as F

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)

1.1 搭建语言类
 

定义了两个常量 SOS_token 和 EOS_token,其分别代表序列的开始和结束。 Lang 类,用于方便对语料库进行操作:
●word2index 是一个字典,将单词映射到索引
●word2count 是一个字典,记录单词出现的次数
●index2word 是一个字典,将索引映射到单词
●n_words 是单词的数量,初始值为 2,因为序列开始和结束的单词已经被添加

SOS_token = 0
EOS_token = 1
 
# 语言类,方便对语料库进行操作
class Lang:
    def __init__(self, name):
        self.name = name
        self.word2index = {}
        self.word2count = {}
        self.index2word = {0: "SOS", 1: "EOS"}
        self.n_words    = 2  # Count SOS and EOS
 
    def addSentence(self, sentence):
        for word in sentence.split(' '):
            self.addWord(word)
 
    def addWord(self, word):
        if word not in self.word2index:
            self.word2index[word] = self.n_words
            self.word2count[word] = 1
            self.index2word[self.n_words] = word
            self.n_words += 1
        else:
            self.word2count[word] += 1

1.2 文本处理函数

def unicodeToAscii(s):
    return ''.join(
        c for c in unicodedata.normalize('NFD', s)
        if unicodedata.category(c) != 'Mn'
    )
 
# 小写化,剔除标点与非字母符号
def normalizeString(s):
    s = unicodeToAscii(s.lower().strip())
    s = re.sub(r"([.!?])", r" \1", s)
    s = re.sub(r"[^a-zA-Z.!?]+", r" ", s)
    return s

1.3 文件读取函数

def readLangs(lang1, lang2, reverse=False):
    print("Reading lines...")

    # 以行为单位读取文件
    lines = open('%s-%s.txt' % (lang1, lang2), encoding='utf-8'). \
        read().strip().split('\n')

    # 将每一行放入一个列表中
    # 一个列表中有两个元素,A语言文本与B语言文本
    pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines]

    # 创建Lang实例,并确认是否反转语言顺序
    if reverse:
        pairs = [list(reversed(p)) for p in pairs]
        input_lang = Lang(lang2)
        output_lang = Lang(lang1)
    else:
        input_lang = Lang(lang1)
        output_lang = Lang(lang2)

    return input_lang, output_lang, pairs


MAX_LENGTH = 10  # 定义语料最长长度

eng_prefixes = (
    "i am ", "i m ",
    "he is", "he s ",
    "she is", "she s ",
    "you are", "you re ",
    "we are", "we re ",
    "they are", "they re "
)


def filterPair(p):
    return len(p[0].split(' ')) < MAX_LENGTH and \
           len(p[1].split(' ')) < MAX_LENGTH and p[1].startswith(eng_prefixes)


def filterPairs(pairs):
    # 选取仅仅包含 eng_prefixes 开头的语料
    return [pair for pair in pairs if filterPair(pair)]


def prepareData(lang1, lang2, reverse=False):
    # 读取文件中的数据
    input_lang, output_lang, pairs = readLangs(lang1, lang2, reverse)
    print("Read %s sentence pairs" % len(pairs))

    # 按条件选取语料
    pairs = filterPairs(pairs[:])
    print("Trimmed to %s sentence pairs" % len(pairs))
    print("Counting words...")

    # 将语料保存至相应的语言类
    for pair in pairs:
        input_lang.addSentence(pair[0])
        output_lang.addSentence(pair[1])

    # 打印语言类的信息
    print("Counted words:")
    print(input_lang.name, input_lang.n_words)
    print(output_lang.name, output_lang.n_words)
    return input_lang, output_lang, pairs


input_lang, output_lang, pairs = prepareData('eng', 'fra', True)
print(random.choice(pairs))

常量 MAX_LENGTH,表示语料中句子的最大长度。

元组 eng_prefixes,包含一些英语句子的前缀。这些前缀用于筛选语料,只选择以这些前缀开头的句子

filterPair 函数用于过滤语料对。它的返回值是一个布尔值,表示是否保留该语料对。这里的条件是:两个句子的长度都不超过 MAX_LENGTH,并且输出语句(第二个句子)以 eng_prefixes 中的某个前缀开头

filterPairs 函数接受一个语料对列表,然后调用 filterPair 函数过滤掉不符合条件的语料对,返回一个新的语料对列表。

prepareData 函数是主要的数据准备函数。它调用了之前定义的 readLangs 函数来读取语言对,然后使用 filterPairs 函数按条件过滤语料对。接着,它打印读取的句子对数、过滤后的句子对数,并统计语料中的词汇量。最后,它将语料保存到相应的语言类中,并返回这些语言类对象以及过滤后的语料对。

二、Seq2Seq 模型

 2.1 编码器(Encoder)

class EncoderRNN(nn.Module):
    def __init__(self, input_size, hidden_size):
        super(EncoderRNN, self).__init__()
        self.hidden_size = hidden_size
        self.embedding   = nn.Embedding(input_size, hidden_size)
        self.gru         = nn.GRU(hidden_size, hidden_size)
 
    def forward(self, input, hidden):
        embedded       = self.embedding(input).view(1, 1, -1)
        output         = embedded
        output, hidden = self.gru(output, hidden)
        return output, hidden
 
    def initHidden(self):
        return torch.zeros(1, 1, self.hidden_size, device=device)

2.2 解码器(Decoder)

class DecoderRNN(nn.Module):
    def __init__(self, hidden_size, output_size):
        super(DecoderRNN, self).__init__()
        self.hidden_size = hidden_size
        self.embedding   = nn.Embedding(output_size, hidden_size)
        self.gru         = nn.GRU(hidden_size, hidden_size)
        self.out         = nn.Linear(hidden_size, output_size)
        self.softmax     = nn.LogSoftmax(dim=1)
 
    def forward(self, input, hidden):
        output         = self.embedding(input).view(1, 1, -1)
        output         = F.relu(output)
        output, hidden = self.gru(output, hidden)
        output         = self.softmax(self.out(output[0]))
        return output, hidden
 
    def initHidden(self):
        return torch.zeros(1, 1, self.hidden_size, device=device)

三、训练

3.1 数据预处理

def indexesFromSentence(lang, sentence):
    return [lang.word2index[word] for word in sentence.split(' ')]
 
# 将数字化的文本,转化为tensor数据
def tensorFromSentence(lang, sentence):
    indexes = indexesFromSentence(lang, sentence)
    indexes.append(EOS_token)
    return torch.tensor(indexes, dtype=torch.long, device=device).view(-1, 1)
 
# 输入pair文本,输出预处理好的数据
def tensorsFromPair(pair):
    input_tensor  = tensorFromSentence(input_lang, pair[0])
    target_tensor = tensorFromSentence(output_lang, pair[1])
    return (input_tensor, target_tensor)

3.2 训练函数

使用use_teacher_forcing 的目的是在训练过程中平衡解码器的预测能力和稳定性。以下是对两种策略的解释:
1. Teacher Forcing:在每个时间步(di循环中),解码器的输入都是目标序列中的真实标签。这样做的好处是,解码器可以直接获得正确的输入信息,加快训练速度,并且在训练早期提供更准确的梯度信号,帮助解码器更好地学习。然而,过度依赖目标序列可能会导致模型过于敏感,一旦目标序列中出现错误,可能会在解码器中产生累积的误差。
2. Without Teacher Forcing:在每个时间步,解码器的输入是前一个时间步的预测输出。这样做的好处是,解码器需要依靠自身的预测能力来生成下一个输入,从而更好地适应真实应用场景中可能出现的输入变化。这种策略可以提高模型的稳定性,但可能会导致训练过程更加困难,特别是在初始阶段。一般来说,Teacher Forcing策略在训练过程中可以帮助模型快速收敛,而Without Teacher Forcing策略则更接近真实应用中的生成场景。通常会使用一定比例的Teacher Forcing,在训练过程中逐渐减小这个比例,以便模型逐渐过渡到更自主的生成模式。
综上所述,通过使用use_teacher_forcing 来选择不同的策略,可以在训练解码器时平衡模型的预测能力和稳定性,同时也提供了更灵活的生成模式选择。

teacher_forcing_ratio = 0.5
 
def train(input_tensor, target_tensor, 
          encoder, decoder, 
          encoder_optimizer, decoder_optimizer, 
          criterion, max_length=MAX_LENGTH):
    
    # 编码器初始化
    encoder_hidden = encoder.initHidden()
    
    # grad属性归零
    encoder_optimizer.zero_grad()
    decoder_optimizer.zero_grad()
 
    input_length  = input_tensor.size(0)
    target_length = target_tensor.size(0)
    
    # 用于创建一个指定大小的全零张量(tensor),用作默认编码器输出
    encoder_outputs = torch.zeros(max_length, encoder.hidden_size, device=device)
 
    loss = 0
    
    # 将处理好的语料送入编码器
    for ei in range(input_length):
        encoder_output, encoder_hidden = encoder(input_tensor[ei], encoder_hidden)
        encoder_outputs[ei]            = encoder_output[0, 0]
    
    # 解码器默认输出
    decoder_input  = torch.tensor([[SOS_token]], device=device)
    decoder_hidden = encoder_hidden
 
    use_teacher_forcing = True if random.random() < teacher_forcing_ratio else False
    
    # 将编码器处理好的输出送入解码器
    if use_teacher_forcing:
        # Teacher forcing: Feed the target as the next input
        for di in range(target_length):
            decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden)
            
            loss         += criterion(decoder_output, target_tensor[di])
            decoder_input = target_tensor[di]  # Teacher forcing
    else:
        # Without teacher forcing: use its own predictions as the next input
        for di in range(target_length):
            decoder_output, decoder_hidden = decoder(decoder_input, decoder_hidden)
            
            topv, topi    = decoder_output.topk(1)
            decoder_input = topi.squeeze().detach()  # detach from history as input
 
            loss         += criterion(decoder_output, target_tensor[di])
            if decoder_input.item() == EOS_token:
                break
 
    loss.backward()
 
    encoder_optimizer.step()
    decoder_optimizer.step()
 
    return loss.item() / target_length

import time
import math
 
def asMinutes(s):
    m = math.floor(s / 60)
    s -= m * 60
    return '%dm %ds' % (m, s)
 
def timeSince(since, percent):
    now = time.time()
    s = now - since
    es = s / (percent)
    rs = es - s
    return '%s (- %s)' % (asMinutes(s), asMinutes(rs))

def trainIters(encoder,decoder,n_iters,print_every=1000,
               plot_every=100,learning_rate=0.01):
    
    start = time.time()
    plot_losses      = []
    print_loss_total = 0  # Reset every print_every
    plot_loss_total  = 0  # Reset every plot_every
 
    encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)
    decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)
    
    # 在 pairs 中随机选取 n_iters 条数据用作训练集
    training_pairs    = [tensorsFromPair(random.choice(pairs)) for i in range(n_iters)]
    criterion         = nn.NLLLoss()
 
    for iter in range(1, n_iters + 1):
        training_pair = training_pairs[iter - 1]
        input_tensor  = training_pair[0]
        target_tensor = training_pair[1]
 
        loss = train(input_tensor, target_tensor, encoder,
                     decoder, encoder_optimizer, decoder_optimizer, criterion)
        print_loss_total += loss
        plot_loss_total  += loss
 
        if iter % print_every == 0:
            print_loss_avg   = print_loss_total / print_every
            print_loss_total = 0
            print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters),
                                         iter, iter / n_iters * 100, print_loss_avg))
 
        if iter % plot_every == 0:
            plot_loss_avg = plot_loss_total / plot_every
            plot_losses.append(plot_loss_avg)
            plot_loss_total = 0
 
    return plot_losses

四、训练与评估

hidden_size   = 256
encoder1      = EncoderRNN(input_lang.n_words, hidden_size).to(device)
attn_decoder1 = DecoderRNN(hidden_size, output_lang.n_words).to(device)
 
plot_losses = trainIters(encoder1, attn_decoder1, 100000, print_every=5000)

 

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               # 忽略警告信息
# plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        # 分辨率
 
epochs_range = range(len(plot_losses))
 
plt.figure(figsize=(8, 3))
 
plt.subplot(1, 1, 1)
plt.plot(epochs_range, plot_losses, label='Training Loss')
plt.legend(loc='upper right')
plt.title('Training Loss')
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1502429.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

ssm+vue的农业信息管理系统(有报告)。Javaee项目,ssm vue前后端分离项目。

演示视频&#xff1a; ssmvue的农业信息管理系统&#xff08;有报告&#xff09;。Javaee项目&#xff0c;ssm vue前后端分离项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xff09;三层体系结构&…

备考银行科技岗刷题笔记(持续更新版)

银行考试计算机部分复习 IEEE 802.11的帧格式 1.1 IEEE 802.11是什么&#xff1f; 802.11是国际电工电子工程学会&#xff08;IEEE&#xff09;为无线局域网络制定的标准。目前在802.11的基础上开发出了802.11a、802.11b、802.11g、802.11n、802.11ac。并且为了保证802.11更…

npm install没有创建node_modules文件夹

问题记录 live-server 使用时 报错&#xff1a;live-server : 无法将“live-server”项识别为 cmdlet、函数、脚本文件或可运行程序的名称。 npm install 安装 但是 这时npm install没有创建node_modules文件夹&#xff0c;只生成package-lock.json文件 方法一&#xff1a; 手…

NineData与OceanBase完成产品兼容认证,共筑企业级数据库新生态

近日&#xff0c;云原生智能数据管理平台 NineData 和北京奥星贝斯科技有限公司的 OceanBase 数据库完成产品兼容互认证。经过严格的联合测试&#xff0c;双方软件完全相互兼容、功能完善、整体运行稳定且性能表现优异。 此次 NineData 与 OceanBase 完成产品兼容认证&#xf…

软考70-上午题-【面向对象技术2-UML】-UML中的图1

一、图的定义 图是一组元素的图形表示&#xff0c;大多数情况下把图画成顶点、弧的联通图。 顶点&#xff1a;代表事物&#xff1b; 弧&#xff1a;代表关系。 可以从不同的角度画图&#xff0c;UML提供了13种图&#xff1a;&#xff08;只看9种&#xff09; 类图&#xff…

学习c语言:顺序表

一、顺序表的概念和结构 1.1 线性表 线性表&#xff08; linearlist &#xff09;是n个具有相同特性的数据元素的有限序列。线性表是⼀种在实际中⼴泛使⽤的数据结构&#xff0c;常⻅的线性表&#xff1a;顺序表、链表、栈、队列、字符串... 线性表在逻辑上是线性结构&#x…

【网站项目】096实验室开放管理系统

&#x1f64a;作者简介&#xff1a;拥有多年开发工作经验&#xff0c;分享技术代码帮助学生学习&#xff0c;独立完成自己的项目或者毕业设计。 代码可以私聊博主获取。&#x1f339;赠送计算机毕业设计600个选题excel文件&#xff0c;帮助大学选题。赠送开题报告模板&#xff…

15-单片机烧录FreeTOS操作系统后,程序的执行流程

任务创建 1、在系统上电后&#xff0c;第一个执行的是启动文件由汇编语言编写的复位函数 通过复位函数来初始化系统的时钟&#xff0c;然后再执行__main,初始化系统的堆和栈&#xff0c;然后跳转到main函数 2、在main函数中可以直接进行任务创建操作 因为在FreeRTOS中会自动…

c++ primer plus 第十五章笔记 友元,异常和其他

友元类&#xff1a; 两个类不存在继承和包含的关系&#xff0c;但是我想通过一个类的成员函数来修改另一个类的私有成员和保护成员的时候&#xff0c;可以使用友元类。 class A {private:int num;//私有成员//...public: //...friend class B;//声明一个友元类 }class…

SpringBootWeb(接收请求数据,返回响应结果,分层解耦,Spring的IOCDI)【详解】

目录 一、接收请求数据 1. 接收表单参数 1.原始方式【了解】 2.SpringBoot方式 3.参数名不一致RequestParam 2.实体参数 1.简单实体对象 2.复杂实体对象 3.数组集合参数 4.日期参数 3. JSON参数 1.Postman发送JSON数据 2.服务端接收JSON数据 4. 路径参数(rest风格…

httprunner结合pytest的关键字

1. 通用关键字 可参考官方文档&#xff1a; Write Testcase - HttpRunner V3.x Docs 2. 特别关键字 2.1. 步骤step前置 2.1.1. setup_hook 关键源码 def setup_hook(self, hook: Text, assign_var_name: Text None) -> "RunRequest":if assign_var_name:sel…

【Python】新手入门:全局变量和局部变量的概念、区别以及用法

【Python】新手入门&#xff1a;全局变量和局部变量的概念、区别以及用法 &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&#x1f448;…

基于卷积神经网络的野外可食用植物分类系统

温馨提示&#xff1a;文末有 CSDN 平台官方提供的学长 QQ 名片 :) 1. 项目简介 本文详细探讨了一基于深度学习的可食用植物图像识别系统。采用TensorFlow和Keras框架&#xff0c;利用卷积神经网络&#xff08;CNN&#xff09;进行模型训练和预测&#xff0c;并引入迁移学习模型…

联立方程模型的可识别性的通俗解释

联立方程模型的可识别性&#xff0c;主要的解法是阶条件算法和秩条件算法&#xff0c;数学公式角度的解释就不讲了&#xff0c;参考下面的前人文献。 【计量经济学】联立方程模型-CSDN博客 说一下公式算法背后的通俗原理。 在计量经济模型中&#xff0c;比如 Y23*Xu中&#x…

springboot251基于springboot-vue的毕业论文管理系统

毕业论文管理系统设计与实现 摘 要 现代经济快节奏发展以及不断完善升级的信息化技术&#xff0c;让传统数据信息的管理升级为软件存储&#xff0c;归纳&#xff0c;集中处理数据信息的管理方式。本毕业论文管理系统就是在这样的大环境下诞生&#xff0c;其可以帮助管理者在短…

实战|环信 Vue2 uniapp Demo重构焕新!经典再升级!

项目背景 当前环信 uni-app vue2 Demo 地址升级版本 Github 地址&#xff08;临时&#xff09; 原版本功能实现方式较混乱&#xff0c;代码逻辑晦涩难懂&#xff0c;不利于开发者参考或复用。此实战项目在确保原项目功能保留的情况下进行完全重写并新增大量功能&#xff0c;以…

鸡肋的Git

1.前言 对于大多数开发人员来说&#xff0c;我们大多数在学习或者工作过程中只关注核心部分&#xff0c;比如说学习Java&#xff0c;可能对于大多数人而言一开始都是从Java基础学起&#xff0c;然后408&#xff0c;Spring&#xff0c;中间件等&#xff0c;当你发现很多高深的技…

ARM中汇编语言的学习(加法、乘法、除法、左移、右移、按位与等多种命令操作实例以及ARM的 N、Z、C、V 标志位的解释)

汇编概述 汇编需要学习的大致框架如下&#xff1a; 汇编中的符号 1.指令&#xff1b;能够北嘁肷梢惶?2bit机器码&#xff0c;并且能够被cpui识别和执行 2.伪指令&#xff1a;本身不是指令&#xff0c;编译器可以将其替换成若干条指令 3.伪操作&#xff1a;不会生成指令…

STL之set容器代码详解

1 基础概念 所有元素都会在插入时自动被排序 本质&#xff1a; set/multiset属于关联式容器&#xff0c;底层结构是用二叉树实现。 set和multiset区别&#xff1a; set不允许容器中有重复的元素&#xff1b; multiset允许容器中有重复的元素 。 2 代码示例 Talk is chea…

GO语言接入支付宝

GO语言接入支付宝 今天就go语言接入支付宝写一个教程 使用如下库&#xff0c;各种接口较为齐全 "github.com/smartwalle/alipay/v3"先简单介绍下加密&#xff1a; 试想&#xff0c;当用户向支付宝付款时&#xff0c;若不进行任何加密&#xff0c;那么黑客就可以任…