数据结构——lesson7二叉树 堆的介绍与实现

news2024/11/18 14:57:29

前言💞💞

啦啦啦~这里是土土数据结构学习笔记🥳🥳

在这里插入图片描述
💥个人主页:大耳朵土土垚的博客
💥 所属专栏:数据结构学习笔记
💥对于数据结构顺序表链表有疑问的都可以在上面数据结构的专栏进行学习哦~ 欢迎大家🥳🥳点赞✨收藏💖评论哦~🌹🌹🌹 有问题可以写在评论区或者私信我哦~

一、 堆的概念及结构

如果有一个关键码的集合K = { k1,k2 ,k3 ,…,kn-1 },把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足:ki <=k(2i+1 )且 ki<=k(2i+2) ( ki >=k(2i+1 )且 ki>=k(2i+2) ) i = 0,1,2…,则称为小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

堆的性质

  1. 堆中某个节点的值总是不大于或不小于其父节点的值;
  2. 堆总是一棵完全二叉树。
    在这里插入图片描述

✨✨简单来说大堆指的是父节点都大于子节点的完全二叉树;
小堆指的是父节点都小于子节点的完全二叉树;
大堆的根节点是最大的,小堆是最小的。

二、堆的实现

1.堆的创建

我们给出一个数组,这个数组逻辑上可以看做一颗完全二叉树,但是还不是一个堆,现在我们通过算法,把它构建成一个堆。根节点左右子树不是堆,我们怎么调整呢?这里我们从倒数的第一个非叶子节点的子树开始调整,一直调整到根节点的树,就可以调整成堆。

下面是堆创建以及实现堆所需的函数,后文将一一介绍

#pragma once
#define _CRT_SECURE_NO_WARNINGS 1
#include<stdio.h>
#include<assert.h>
#include<stdlib.h>
typedef int HPDataType;
//构建一个结构体封装堆
typedef struct Heap
{
	HPDataType* a;//数组顺序表
	int size;//堆元素个数
	int capacity;//数组空间
}Heap;
//以下是实现堆的函数
// 堆的初始化
void HeapInit(Heap* hp);
// 堆的销毁
void HeapDestory(Heap* hp);
// 堆的插入
void HeapPush(Heap* hp, HPDataType x);
// 堆的删除
void HeapPop(Heap* hp);
// 取堆顶的数据
HPDataType HeapTop(Heap* hp);
// 堆的数据个数
int HeapSize(Heap* hp);
// 堆的判空
int HeapEmpty(Heap* hp);

2.堆的初始化

void HeapInit(Heap* hp)

//堆的初始化
void HeapInit(Heap* hp)
{
	assert(hp);
	hp->a = NULL;
	hp->capacity = 0;
	hp->size = 0;
}

3.堆的删除(删除堆顶元素)

void HeapPop(Heap* hp)

在介绍堆的删除之前我们先介绍堆向下调整算法;
显而易见堆的删除不可能像顺序表那样删除尾部元素size–就行,我们需要玩点高深的,删除顶部元素,但删除顶部元素就没办法保证它删除后还是一个堆了,这就要利用我们下面介绍的向下调整算法。

int a[] = {1,8,3,5,7,6}; 

该数组逻辑结构可以看成一个完全二叉树如下图所示:
在这里插入图片描述

我们可以从图中看出它是一颗完全二叉树,但并不是所有的父节点都大于或小于其子节点,所以不是一个堆,接下来我们就可以通过下面介绍的堆向下调整算法将它调整为一个堆。

堆向下调整算法
现在我们给出一个数组,逻辑上看做一颗完全二叉树。我们通过从根节点开始的向下调整算法可以把它调整成一个小堆。
向下调整算法有一个前提:左右子树必须是一个堆,才能调整。

int array[] = {27,15,19,18,28,34,65,49,25,37};

在这里插入图片描述

🥳🥳 ①下面介绍第一种向下调整为小堆
前提条件——左右子树都是小堆

//堆向下调整算法(小堆)
void AdjustDown(HPDataType* a, int n,int parent)
{
	
	int child = parent * 2 + 1;
	
	//向下调整
	while (parent < n)
	{
	//找到较小的孩子节点
		if (child + 1 < n && a[child] > a[child + 1])
		{
			child++;
		}
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = child * 2 + 1;
		}
		else
			break;
		
	}
}

因为要调整为小堆,所以要找到孩子中较小的一个进行比较;
如果父节点小于较小的孩子节点则直接break不需要调整,因为向下调整的前提条件是——左右子树都是小堆
调整前:
在这里插入图片描述
调整后:在这里插入图片描述

💞💞Swap函数在这里

//交换函数
void Swap(HPDataType* a,HPDataType* b)
{
	HPDataType tmp = *a;
	*a = *b;
	*b = tmp;
}

🥳🥳②第二种向下调整为大堆;前提条件——左右子树都是大堆

//堆向下调整算法(大堆)
void AdjustDown(HPDataType* a, int n,int parent)
{
	
	int child = parent * 2 + 1;
	
	//向下调整
	while (child < n)
	{
	//找到较大的孩子节点
		if (child + 1 < n && a[child] < a[child + 1])
		{
			child++;
		}
		if (a[child] > a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = child * 2 + 1;
		}
		else
			break;
		
	}
}

因为要调整为大堆,所以要找到孩子中较大的一个进行比较; 如果父节点大于于较大的孩子节点则直接break不需要调整,因为向下调整的前提条件是——左右子树都是大堆

🎉🎉我们这里使用小堆向下调整,大家可以根据自己的需求选择哦~

学习完堆向下调整我们知道只要左右子树是一个堆,那么我们就可以从根节点开始向下调整直到整个二叉树成为一个堆;💫💫
所以删除堆顶元素我们就可以将堆顶元素与最后一个元素交换一下位置,这样除了根节点,其余父子关系都没变,左右子树还是堆,删除交换后的最后一个元素(也就是原来的根节点);🎉🎉
我们再利用堆向下调整算法,将整个二叉树再次复原为堆。🥳🥳

堆顶元素删除

// 堆的删除,删除堆顶元素
void HeapPop(Heap* hp)
{
	assert(hp);
	assert(!HeapEmpty(hp));//判空函数将在后文介绍
	
	//交换首尾元素
	Swap(&hp->a[0], &hp->a[hp->size - 1]);
	
	//size要记得--,表示删除元素
	hp->size--;
	
	//向下调整算法
	AdjustDown(hp->a, hp->size, 0);

}

4.堆的插入

void HeapPush(Heap* hp, HPDataType x)

我们知道堆的父节点必须都大于或小于子节点,那么往一个堆中插入元素是没办法保证大于或小于其父节点的,所以我们插入之后需要调整这个二叉树来保证堆;
这里就要用到堆向上调整算法了;注意下面是小堆的调整

堆向上调整算法

//向上调整
void AdjustUp(HPDataType* a,int child)
{
	//找到双亲节点
	int parent = (child - 1) / 2;
	//向上调整
	while (child > 0)
	{
		if (a[parent] > a[child])
		{
			Swap(&a[parent], &a[child]);
			child = parent;
			parent = (child - 1) / 2;
		}
		else
			break;
		
	}
}

堆向上调整类似于向下调整也有大堆小堆之分,大家可以依照堆的向下调整自己试试看写一下大堆的向上调整

堆的插入

// 堆的插入
void HeapPush(Heap* hp, HPDataType x)
{
	assert(hp);
	//判断容量
	if (hp->size == hp->capacity)//容量满了扩容
	{
		int newcapacity = hp->capacity == 0 ? 0 : 2 * hp->capacity;
		HPDataType* new = (HPDataType*)realloc(hp->a, sizeof(HPDataType) * newcapacity);
		if (new == NULL)
		{
			perror("realloc fail");
			return;
		}
		hp->a = new;
		hp->capacity = newcapacity;
	}
	//尾插
	hp->a[hp->size] = x;
	hp->size++;
	//向上调整算法
	AdjustUp(hp->a,hp->size-1);
}

这里要注意插入数据要判断容量,如果满了要用realloc函数扩容,对于realloc函数有疑问的可以看土土的动态内存函数博客🎉🎉——c语言动态内存函数介绍;
如果第一次扩容,就将空间扩为4个HPDataType,其余扩原来的两倍

5. 取堆顶的数据

HPDataType HeapTop(Heap* hp);

// 取堆顶的数据
HPDataType HeapTop(Heap* hp)
{
	assert(hp);
	assert(!HeapEmpty(hp));//判空
	return hp->a[0];//顶即下标为0的元素
}

6. 堆的数据个数

int HeapSize(Heap* hp)

// 堆的数据个数
int HeapSize(Heap* hp)
{
	assert(hp);
	return hp->size;
}

堆的数据个数即为结构体中的size,直接返回即可

7.堆的销毁

void HeapDestory(Heap* hp)

// 堆的销毁
void HeapDestory(Heap* hp)
{
	assert(hp);
	free(hp->a);
	hp->a = NULL;
	hp->capacity = 0;
	hp->size = 0;
}

,在内存中用realloc函数开辟空间用 free释放即可

💖💖判空函数在这里~
int HeapEmpty(Heap* hp)

// 堆的判空
int HeapEmpty(Heap* hp)
{
	assert(hp);
	return hp->size == 0;
}

8.堆实现代码如下

#include"Heap.h"
//堆的初始化
void HeapInit(Heap* hp)
{
	assert(hp);
	hp->a = NULL;
	hp->capacity = 0;
	hp->size = 0;
}
// 堆的销毁
void HeapDestory(Heap* hp)
{
	assert(hp);
	free(hp->a);
	hp->a = NULL;
	hp->capacity = 0;
	hp->size = 0;
}
//交换函数
void Swap(HPDataType* a,HPDataType* b)
{
	HPDataType tmp = *a;
	*a = *b;
	*b = tmp;
}

//堆向下调整算法
void AdjustDown(HPDataType* a, int n,int parent)
{
	//找到较小的孩子节点
	int child = parent * 2 + 1;
	
	//向下调整
	while (child < n)
	{
		if (child + 1 < n && a[child] > a[child + 1])
		{
			child++;
		}
		if (a[child] < a[parent])
		{
			Swap(&a[child], &a[parent]);
			parent = child;
			child = child * 2 + 1;
		}
		else
			break;
		
	}
}

测试代码如下:

#include"Heap.h"
int main()
{
	Heap hp;
	HeapInit(&hp);
	int a[] = { 65,100,70,32,50,60 };
	for (int i = 0; i < 6; i++)
	{
		HeapPush(&hp, a[i]);
	}
	while (!HeapEmpty(&hp))
	{
		int top = HeapTop(&hp);
		printf("%d\n", top);
		HeapPop(&hp);
	}

	return 0;
	
}

运行结果如下:
在这里插入图片描述
居然是升序诶~大家知道原因吗
可以根据上面的代码和介绍理解为自己解答哦~

三、结语

以上就是堆的介绍和实现啦~✨✨需要注意的是堆有大堆小堆之分,相应的函数也就有两种,这里简单介绍了小堆的实现,大堆介绍了一点,大家可以通过上面介绍的自己探索大堆的实现,此外堆向上调整与向下调整是一个重难点大家要多花时间去理解与记忆哦 ~完结撒花 ~💖🎉🎉🥳

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1501120.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

JavaWeb笔记 --- 一JDBC

一、JDBC JDBC就是Java操作关系型数据库的一种API DriverManager 注册驱动可以不写 Class.forName("com.mysql.jdbc.Driver"); Connection Statement ResultSet PrepareStatement 密码输入一个SQL脚本&#xff0c;直接登录 预编译开启在url中 数据库连接池

程序如何知道mqtt设备是否在线

在做物联网设备的时候经常会碰到设备的在线与掉线 问题&#xff1a;emqx如何来实现这个在线与掉线 实现&#xff1a;添加一个规则&#xff0c;程序监控这个规则 1、SELECT * FROM "$events/client_connected", "$events/client_disconnected" 2、添加一…

10 事务控制

文章目录 事务控制事务概述事务操作事务四大特性事务隔离级别 事务控制 事务概述 MySQL 事务主要用于处理操作量大&#xff0c;复杂度高的数据。比如说&#xff0c;在人员管理系统中&#xff0c;你删除一个人员&#xff0c;既需要删除人员的基本资料&#xff0c;也要删除和该…

leetcode 热题 100_除自身以外数组的乘积

题解一&#xff1a; 前缀 / 后缀数组&#xff1a;某元素除自身以外的乘积&#xff0c;也就是其全部前缀元素乘积 * 全部后缀元素乘积&#xff0c;因此我们可以构造前缀数组和后缀数组&#xff0c;分别存储前i个元素的成绩和后i个元素的乘积&#xff0c;再将i-1前缀乘积 * i1后缀…

C及C++每日练习(3)

选择题&#xff1a; 1.以下程序的输出结果是&#xff08;&#xff09; #include <stdio.h> main() { char a[10] {1, 2, 3, 4, 5, 6, 7, 8, 9, 0}, *p; int i; i 8; p a i; printf("%s\n", p - 3); } A.6 B. 6789 C. 6 D.789 对于本题&#xff0…

亚信安慧AntDB:企业数据管理的明日之星

在信息科技飞速发展的时代&#xff0c;亚信科技AntDB团队提出了一项颠覆性的“超融合”理念&#xff0c;旨在满足企业日益增长的复杂混合负载和多样化数据类型的业务需求。这一创新性框架的核心思想在于融合多引擎和多能力&#xff0c;充分发挥分布式数据库引擎的架构优势&…

unicloud 集合 Collection 详解及其使用示例

Collection Collection是unicloud数据的指定表集合 获取集合Collection示例如下 const db uniCloud.database(); // 获取 user 集合的引用 const collection db.collection(user);集合 Collection 通过 db.collection(name) 可以获取指定集合的引用&#xff0c;在集合上可…

网络工程师笔记9

动态路由 RIP路由协议 配置简单 易于维护 适用于小型网络 周期性是30s发一次

HTML—常用标签

常用标签&#xff1a; 标题标签&#xff1a;<h1></h1>......<h6></h6>段落标签&#xff1a;<p></p>换行标签&#xff1a;<br/>列表&#xff1a;无序列表<ul><li></li></ul> 有序列表<ol>&…

《解密云计算:企业之选》

前言 在当今数字化时代&#xff0c;企业面临着巨大的数据处理压力和信息化需求&#xff0c;传统的IT架构已经无法满足日益增长的业务需求。在这样的背景下&#xff0c;越来越多的企业开始转向云计算&#xff0c;以实现灵活、高效和可扩展的IT资源管理和利用。 云计算 云计算是…

css使用

文章目录 一、什么是CSS二、CSS导入方式三、CSS选择器四、CSS属性 一、什么是CSS <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>Title</title><style>div{color: red;}</style> &…

清华大学1748页CTF竞赛入门指南,完整版开放下载!

CTF是一种针对信息安全领域的经济性挑战&#xff0c;旨在通过解决一系列的难题来寻找隐藏的“flag”。CTF比赛战队一般是以高校、科研单位、企业、信息安全从业者或社会团体组成。对于网安爱好者及从业者来说&#xff0c;拥有“CTF参赛经验”也是求职中的加分项。 前几天分享的…

[递归、搜索、回溯]----递归

前言 作者&#xff1a;小蜗牛向前冲 专栏&#xff1a;小蜗牛算法之路 专栏介绍&#xff1a;"蜗牛之道&#xff0c;攀登大厂高峰&#xff0c;让我们携手学习算法。在这个专栏中&#xff0c;将涵盖动态规划、贪心算法、回溯等高阶技巧&#xff0c;不定期为你奉上基础数据结构…

设计模式——2_4 中介者(Mediator)

我寄愁心与明月&#xff0c;随风直到夜郎西 ——李白《闻王昌龄左迁龙标遥有此寄》 文章目录 定义图纸一个例子&#xff1a;怎么调度一组地铁站台和地铁开车指挥中心 碎碎念中介者和表单平台思想但是这种平台便利性是要付出代价的变化隔离原则 姑妄言之 定义 用一个中介者对象…

「解析文件流,Java之FileOutputStream助您轻松操作文件!」

&#x1f3c6;本文收录于「滚雪球学Java」专栏&#xff0c;专业攻坚指数级提升&#xff0c;助你一臂之力&#xff0c;带你早日登顶&#x1f680;&#xff0c;欢迎大家关注&&收藏&#xff01;持续更新中&#xff0c;up&#xff01;up&#xff01;up&#xff01;&#xf…

电力物联网系统设计

电力物联网系统设计 简介 在新能源行业从业多年&#xff0c;参与和负责过大大小小的的项目&#xff0c;发电侧、电网侧、用户侧系统都有过实际的项目经验&#xff0c;这些项目或多或少都有物联网采集方面的需求&#xff0c;本篇文章将会对电力行业物联网经验做一个总结分享。 …

Python 中常用的 GUI(图形用户界面)库介绍

本文将为您详细讲解 Python 中常用的 GUI&#xff08;图形用户界面&#xff09;库&#xff0c;以及它们的特点、区别和优势。Python 提供了多种 GUI 库&#xff0c;每种库都有其特定的用途和优势。这些库包括 Tkinter、PyQt、wxPython 和 Kivy。 1. Tkinter 特点 - 内…

内联函数|auto关键字|范围for的语法|指针空值

文章目录 一、内联函数1.1概念1.2特性 二、auto关键字2.2类型别名思考2.3auto简介2.4auto使用细则2.4 auto不能推导的场景 三、基于范围的for循环(C11)3.1 范围for的语法 四、指针空值nullptr(C11)4.1 C98中的指针空值 所属专栏:C初阶 一、内联函数 1.1概念 以inline修饰的函…

❤ Vue3项目使用yarn 搭建 Vue3+Pinia+Vant3/ElementPlus+typerscript 系统篇(一)

❤ Vue3 完整项目搭建 Vue3PiniaVant3/ElementPlustyperscript系统篇&#xff08;一&#xff09; 1、项目环境和简介 环境 使用nvm 版本 20.10.0 node 版本 20.10.0 npm版本 10.2.3 项目简介&#xff1a; Vue3全家桶viteTSPiniaVant3/ElementPlus-搭建Vue3.x项目 项目开源地…

【JAVA】优化if else的几种方式

在代码编写初期&#xff0c;我们写出来的代码&#xff0c;脉络清晰&#xff0c;结构简单。可随着bug或者新需求的出现&#xff0c;状态变得越来越多&#xff0c;只能不停地加else来区分&#xff0c;久而久之&#xff0c;判断的次数越来越多&#xff0c;嵌套的层数也越来越深&am…