安装算法依赖时版本报错,依赖之间对应版本

news2024/11/17 22:33:07

困惑了很久,毕竟不是计算机专业专业出身,才知道安装深度学习算法各个依赖之间是有版本对应关系的。

(本文使我随笔记录,无价值)

比如:

再比如:

由于我第一步安装cuda时就和其他博主不一致,所以其他依赖版本都需要更改

(如果单纯的跑算法,建议还是和博主一样的版本)

直接上安装过程:

C:\Users\Administrator>activate gpupytorch

(gpupytorch) C:\Users\Administrator>d:

(gpupytorch) D:\>cd D:\PlugWheel

(gpupytorch) D:\PlugWheel>pip install torch-2.2.0+cpu-cp38-cp38-win_amd64.whl
Processing d:\plugwheel\torch-2.2.0+cpu-cp38-cp38-win_amd64.whl
Requirement already satisfied: filelock in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0+cpu) (3.13.1)
Requirement already satisfied: typing-extensions>=4.8.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0+cpu) (4.10.0)
Requirement already satisfied: sympy in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0+cpu) (1.12)
Requirement already satisfied: networkx in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0+cpu) (3.1)
Requirement already satisfied: jinja2 in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0+cpu) (3.1.3)
Requirement already satisfied: fsspec in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0+cpu) (2024.2.0)
Requirement already satisfied: MarkupSafe>=2.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from jinja2->torch==2.2.0+cpu) (2.1.5)
Requirement already satisfied: mpmath>=0.19 in d:\anaconda\envs\gpupytorch\lib\site-packages (from sympy->torch==2.2.0+cpu) (1.3.0)
Installing collected packages: torch
  Attempting uninstall: torch
    Found existing installation: torch 2.2.0
    Uninstalling torch-2.2.0:
      Successfully uninstalled torch-2.2.0
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
torchvision 0.17.0+cpu requires pillow!=8.3.*,>=5.3.0, but you have pillow 8.3.2 which is incompatible.
Successfully installed torch-2.2.0+cpu

(gpupytorch) D:\PlugWheel>pip install torchvision-0.17.0+cpu-cp38-cp38-win_amd64.whl
Processing d:\plugwheel\torchvision-0.17.0+cpu-cp38-cp38-win_amd64.whl
Requirement already satisfied: numpy in d:\anaconda\envs\gpupytorch\lib\site-packages (from torchvision==0.17.0+cpu) (1.21.2)
Requirement already satisfied: requests in d:\anaconda\envs\gpupytorch\lib\site-packages (from torchvision==0.17.0+cpu) (2.31.0)
Requirement already satisfied: torch==2.2.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from torchvision==0.17.0+cpu) (2.2.0+cpu)
Collecting pillow!=8.3.*,>=5.3.0 (from torchvision==0.17.0+cpu)
  Downloading pillow-10.2.0-cp38-cp38-win_amd64.whl.metadata (9.9 kB)
Requirement already satisfied: filelock in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->torchvision==0.17.0+cpu) (3.13.1)
Requirement already satisfied: typing-extensions>=4.8.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->torchvision==0.17.0+cpu) (4.10.0)
Requirement already satisfied: sympy in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->torchvision==0.17.0+cpu) (1.12)
Requirement already satisfied: networkx in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->torchvision==0.17.0+cpu) (3.1)
Requirement already satisfied: jinja2 in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->torchvision==0.17.0+cpu) (3.1.3)
Requirement already satisfied: fsspec in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->torchvision==0.17.0+cpu) (2024.2.0)
Requirement already satisfied: charset-normalizer<4,>=2 in d:\anaconda\envs\gpupytorch\lib\site-packages (from requests->torchvision==0.17.0+cpu) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in d:\anaconda\envs\gpupytorch\lib\site-packages (from requests->torchvision==0.17.0+cpu) (3.6)
Requirement already satisfied: urllib3<3,>=1.21.1 in d:\anaconda\envs\gpupytorch\lib\site-packages (from requests->torchvision==0.17.0+cpu) (2.2.1)
Requirement already satisfied: certifi>=2017.4.17 in d:\anaconda\envs\gpupytorch\lib\site-packages (from requests->torchvision==0.17.0+cpu) (2024.2.2)
Requirement already satisfied: MarkupSafe>=2.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from jinja2->torch==2.2.0->torchvision==0.17.0+cpu) (2.1.5)
Requirement already satisfied: mpmath>=0.19 in d:\anaconda\envs\gpupytorch\lib\site-packages (from sympy->torch==2.2.0->torchvision==0.17.0+cpu) (1.3.0)
torchvision is already installed with the same version as the provided wheel. Use --force-reinstall to force an installation of the wheel.
Downloading pillow-10.2.0-cp38-cp38-win_amd64.whl (2.6 MB)
   ---------------------------------------- 2.6/2.6 MB 3.0 MB/s eta 0:00:00
Installing collected packages: pillow
  Attempting uninstall: pillow
    Found existing installation: Pillow 8.3.2
    Uninstalling Pillow-8.3.2:
      Successfully uninstalled Pillow-8.3.2
Successfully installed pillow-10.2.0

(gpupytorch) D:\PlugWheel>pip install -r E:\DeepLearningModel\Model01\requirements.txt
Requirement already satisfied: torch==2.2.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from -r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (2.2.0+cpu)
Requirement already satisfied: torchvision==0.17.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from -r E:\DeepLearningModel\Model01\requirements.txt (line 2)) (0.17.0+cpu)
Collecting tensorboard (from -r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Downloading tensorboard-2.14.0-py3-none-any.whl.metadata (1.8 kB)
Collecting scipy==1.2.1 (from -r E:\DeepLearningModel\Model01\requirements.txt (line 4))
  Downloading scipy-1.2.1.tar.gz (23.1 MB)
     ---------------------------------------- 23.1/23.1 MB 59.4 MB/s eta 0:00:00
  Preparing metadata (setup.py) ... done
Collecting numpy==1.17.0 (from -r E:\DeepLearningModel\Model01\requirements.txt (line 5))
  Downloading numpy-1.17.0.zip (6.5 MB)
     ---------------------------------------- 6.5/6.5 MB 102.8 MB/s eta 0:00:00
  Preparing metadata (setup.py) ... done
Collecting matplotlib==3.1.2 (from -r E:\DeepLearningModel\Model01\requirements.txt (line 6))
  Downloading matplotlib-3.1.2-cp38-cp38-win_amd64.whl.metadata (1.4 kB)
Collecting opencv_python==4.1.2.30 (from -r E:\DeepLearningModel\Model01\requirements.txt (line 7))
  Downloading opencv_python-4.1.2.30-cp38-cp38-win_amd64.whl.metadata (11 kB)
Collecting tqdm==4.60.0 (from -r E:\DeepLearningModel\Model01\requirements.txt (line 8))
  Downloading tqdm-4.60.0-py2.py3-none-any.whl.metadata (57 kB)
     ---------------------------------------- 57.5/57.5 kB 3.2 MB/s eta 0:00:00
Requirement already satisfied: Pillow==10.2.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from -r E:\DeepLearningModel\Model01\requirements.txt (line 9)) (10.2.0)
Requirement already satisfied: h5py==2.10.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from -r E:\DeepLearningModel\Model01\requirements.txt (line 10)) (2.10.0)
Requirement already satisfied: filelock in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (3.13.1)
Requirement already satisfied: typing-extensions>=4.8.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (4.10.0)
Requirement already satisfied: sympy in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (1.12)
Requirement already satisfied: networkx in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (3.1)
Requirement already satisfied: jinja2 in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (3.1.3)
Requirement already satisfied: fsspec in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (2024.2.0)
Requirement already satisfied: requests in d:\anaconda\envs\gpupytorch\lib\site-packages (from torchvision==0.17.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 2)) (2.31.0)
Collecting cycler>=0.10 (from matplotlib==3.1.2->-r E:\DeepLearningModel\Model01\requirements.txt (line 6))
  Downloading cycler-0.12.1-py3-none-any.whl.metadata (3.8 kB)
Collecting kiwisolver>=1.0.1 (from matplotlib==3.1.2->-r E:\DeepLearningModel\Model01\requirements.txt (line 6))
  Downloading kiwisolver-1.4.5-cp38-cp38-win_amd64.whl.metadata (6.5 kB)
Collecting pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 (from matplotlib==3.1.2->-r E:\DeepLearningModel\Model01\requirements.txt (line 6))
  Downloading pyparsing-3.1.1-py3-none-any.whl.metadata (5.1 kB)
Collecting python-dateutil>=2.1 (from matplotlib==3.1.2->-r E:\DeepLearningModel\Model01\requirements.txt (line 6))
  Downloading python_dateutil-2.9.0.post0-py2.py3-none-any.whl.metadata (8.4 kB)
INFO: pip is looking at multiple versions of opencv-python to determine which version is compatible with other requirements. This could take a while.
Collecting torchvision==0.17.0 (from -r E:\DeepLearningModel\Model01\requirements.txt (line 2))
  Downloading torchvision-0.17.0-cp38-cp38-win_amd64.whl.metadata (6.6 kB)
ERROR: Cannot install -r E:\DeepLearningModel\Model01\requirements.txt (line 2), -r E:\DeepLearningModel\Model01\requirements.txt (line 6), -r E:\DeepLearningModel\Model01\requirements.txt (line 7) and numpy==1.17.0 because these package versions have conflicting dependencies.

The conflict is caused by:
    The user requested numpy==1.17.0
    torchvision 0.17.0 depends on numpy
    matplotlib 3.1.2 depends on numpy>=1.11
    opencv-python 4.1.2.30 depends on numpy>=1.17.3

To fix this you could try to:
1. loosen the range of package versions you've specified
2. remove package versions to allow pip attempt to solve the dependency conflict

ERROR: ResolutionImpossible: for help visit https://pip.pypa.io/en/latest/topics/dependency-resolution/#dealing-with-dependency-conflicts

(gpupytorch) D:\PlugWheel>pip install -r E:\DeepLearningModel\Model01\requirements.txt
Requirement already satisfied: torch==2.2.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from -r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (2.2.0+cpu)
Requirement already satisfied: torchvision==0.17.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from -r E:\DeepLearningModel\Model01\requirements.txt (line 2)) (0.17.0+cpu)
Collecting tensorboard (from -r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Using cached tensorboard-2.14.0-py3-none-any.whl.metadata (1.8 kB)
Collecting scipy==1.2.1 (from -r E:\DeepLearningModel\Model01\requirements.txt (line 4))
  Using cached scipy-1.2.1.tar.gz (23.1 MB)
  Preparing metadata (setup.py) ... done
Collecting numpy==1.17.3 (from -r E:\DeepLearningModel\Model01\requirements.txt (line 5))
  Downloading numpy-1.17.3-cp38-cp38-win_amd64.whl.metadata (2.0 kB)
Collecting matplotlib==3.1.2 (from -r E:\DeepLearningModel\Model01\requirements.txt (line 6))
  Using cached matplotlib-3.1.2-cp38-cp38-win_amd64.whl.metadata (1.4 kB)
Collecting opencv_python==4.1.2.30 (from -r E:\DeepLearningModel\Model01\requirements.txt (line 7))
  Using cached opencv_python-4.1.2.30-cp38-cp38-win_amd64.whl.metadata (11 kB)
Collecting tqdm==4.60.0 (from -r E:\DeepLearningModel\Model01\requirements.txt (line 8))
  Using cached tqdm-4.60.0-py2.py3-none-any.whl.metadata (57 kB)
Requirement already satisfied: Pillow==10.2.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from -r E:\DeepLearningModel\Model01\requirements.txt (line 9)) (10.2.0)
Requirement already satisfied: h5py==2.10.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from -r E:\DeepLearningModel\Model01\requirements.txt (line 10)) (2.10.0)
Requirement already satisfied: filelock in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (3.13.1)
Requirement already satisfied: typing-extensions>=4.8.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (4.10.0)
Requirement already satisfied: sympy in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (1.12)
Requirement already satisfied: networkx in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (3.1)
Requirement already satisfied: jinja2 in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (3.1.3)
Requirement already satisfied: fsspec in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (2024.2.0)
Requirement already satisfied: requests in d:\anaconda\envs\gpupytorch\lib\site-packages (from torchvision==0.17.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 2)) (2.31.0)
Collecting cycler>=0.10 (from matplotlib==3.1.2->-r E:\DeepLearningModel\Model01\requirements.txt (line 6))
  Using cached cycler-0.12.1-py3-none-any.whl.metadata (3.8 kB)
Collecting kiwisolver>=1.0.1 (from matplotlib==3.1.2->-r E:\DeepLearningModel\Model01\requirements.txt (line 6))
  Using cached kiwisolver-1.4.5-cp38-cp38-win_amd64.whl.metadata (6.5 kB)
Collecting pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 (from matplotlib==3.1.2->-r E:\DeepLearningModel\Model01\requirements.txt (line 6))
  Using cached pyparsing-3.1.1-py3-none-any.whl.metadata (5.1 kB)
Collecting python-dateutil>=2.1 (from matplotlib==3.1.2->-r E:\DeepLearningModel\Model01\requirements.txt (line 6))
  Using cached python_dateutil-2.9.0.post0-py2.py3-none-any.whl.metadata (8.4 kB)
Requirement already satisfied: six in d:\anaconda\envs\gpupytorch\lib\site-packages (from h5py==2.10.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 10)) (1.16.0)
Collecting absl-py>=0.4 (from tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Downloading absl_py-2.1.0-py3-none-any.whl.metadata (2.3 kB)
Collecting grpcio>=1.48.2 (from tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Downloading grpcio-1.62.0-cp38-cp38-win_amd64.whl.metadata (4.2 kB)
Collecting google-auth<3,>=1.6.3 (from tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Downloading google_auth-2.28.1-py2.py3-none-any.whl.metadata (4.7 kB)
Collecting google-auth-oauthlib<1.1,>=0.5 (from tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Downloading google_auth_oauthlib-1.0.0-py2.py3-none-any.whl.metadata (2.7 kB)
Collecting markdown>=2.6.8 (from tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Downloading Markdown-3.5.2-py3-none-any.whl.metadata (7.0 kB)
Collecting protobuf>=3.19.6 (from tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Downloading protobuf-4.25.3-cp38-cp38-win_amd64.whl.metadata (541 bytes)
Requirement already satisfied: setuptools>=41.0.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3)) (68.2.2)
Collecting tensorboard-data-server<0.8.0,>=0.7.0 (from tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Downloading tensorboard_data_server-0.7.2-py3-none-any.whl.metadata (1.1 kB)
Collecting werkzeug>=1.0.1 (from tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Downloading werkzeug-3.0.1-py3-none-any.whl.metadata (4.1 kB)
Requirement already satisfied: wheel>=0.26 in d:\anaconda\envs\gpupytorch\lib\site-packages (from tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3)) (0.41.2)
Collecting cachetools<6.0,>=2.0.0 (from google-auth<3,>=1.6.3->tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Downloading cachetools-5.3.3-py3-none-any.whl.metadata (5.3 kB)
Collecting pyasn1-modules>=0.2.1 (from google-auth<3,>=1.6.3->tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Downloading pyasn1_modules-0.3.0-py2.py3-none-any.whl.metadata (3.6 kB)
Collecting rsa<5,>=3.1.4 (from google-auth<3,>=1.6.3->tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Downloading rsa-4.9-py3-none-any.whl.metadata (4.2 kB)
Collecting requests-oauthlib>=0.7.0 (from google-auth-oauthlib<1.1,>=0.5->tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Downloading requests_oauthlib-1.3.1-py2.py3-none-any.whl.metadata (10 kB)
Collecting importlib-metadata>=4.4 (from markdown>=2.6.8->tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Downloading importlib_metadata-7.0.1-py3-none-any.whl.metadata (4.9 kB)
Requirement already satisfied: charset-normalizer<4,>=2 in d:\anaconda\envs\gpupytorch\lib\site-packages (from requests->torchvision==0.17.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 2)) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in d:\anaconda\envs\gpupytorch\lib\site-packages (from requests->torchvision==0.17.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 2)) (3.6)
Requirement already satisfied: urllib3<3,>=1.21.1 in d:\anaconda\envs\gpupytorch\lib\site-packages (from requests->torchvision==0.17.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 2)) (2.2.1)
Requirement already satisfied: certifi>=2017.4.17 in d:\anaconda\envs\gpupytorch\lib\site-packages (from requests->torchvision==0.17.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 2)) (2024.2.2)
Requirement already satisfied: MarkupSafe>=2.1.1 in d:\anaconda\envs\gpupytorch\lib\site-packages (from werkzeug>=1.0.1->tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3)) (2.1.5)
Requirement already satisfied: mpmath>=0.19 in d:\anaconda\envs\gpupytorch\lib\site-packages (from sympy->torch==2.2.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (1.3.0)
Collecting zipp>=0.5 (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Downloading zipp-3.17.0-py3-none-any.whl.metadata (3.7 kB)
Collecting pyasn1<0.6.0,>=0.4.6 (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Downloading pyasn1-0.5.1-py2.py3-none-any.whl.metadata (8.6 kB)
Collecting oauthlib>=3.0.0 (from requests-oauthlib>=0.7.0->google-auth-oauthlib<1.1,>=0.5->tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Downloading oauthlib-3.2.2-py3-none-any.whl.metadata (7.5 kB)
Downloading numpy-1.17.3-cp38-cp38-win_amd64.whl (12.7 MB)
   ---------------------------------------- 12.7/12.7 MB 350.1 kB/s eta 0:00:00
Downloading matplotlib-3.1.2-cp38-cp38-win_amd64.whl (9.1 MB)
   ---------------------------------------- 9.1/9.1 MB 293.9 kB/s eta 0:00:00
Downloading opencv_python-4.1.2.30-cp38-cp38-win_amd64.whl (33.0 MB)
   ---------------------------------------- 33.0/33.0 MB 232.3 kB/s eta 0:00:00
Downloading tqdm-4.60.0-py2.py3-none-any.whl (75 kB)
   ---------------------------------------- 75.8/75.8 kB 262.1 kB/s eta 0:00:00
Downloading tensorboard-2.14.0-py3-none-any.whl (5.5 MB)
   ---------------------------------------- 5.5/5.5 MB 218.6 kB/s eta 0:00:00
Downloading absl_py-2.1.0-py3-none-any.whl (133 kB)
   ---------------------------------------- 133.7/133.7 kB 202.7 kB/s eta 0:00:00
Downloading cycler-0.12.1-py3-none-any.whl (8.3 kB)
Downloading google_auth-2.28.1-py2.py3-none-any.whl (186 kB)
   ---------------------------------------- 186.9/186.9 kB 251.3 kB/s eta 0:00:00
Downloading google_auth_oauthlib-1.0.0-py2.py3-none-any.whl (18 kB)
Downloading grpcio-1.62.0-cp38-cp38-win_amd64.whl (3.8 MB)
   ---------------------------------------- 3.8/3.8 MB 210.1 kB/s eta 0:00:00
Downloading kiwisolver-1.4.5-cp38-cp38-win_amd64.whl (56 kB)
   ---------------------------------------- 56.2/56.2 kB 267.2 kB/s eta 0:00:00
Downloading Markdown-3.5.2-py3-none-any.whl (103 kB)
   ---------------------------------------- 103.9/103.9 kB 221.9 kB/s eta 0:00:00
Downloading protobuf-4.25.3-cp38-cp38-win_amd64.whl (413 kB)
   ---------------------------------------- 413.4/413.4 kB 220.5 kB/s eta 0:00:00
Downloading pyparsing-3.1.1-py3-none-any.whl (103 kB)
   ---------------------------------------- 103.1/103.1 kB 180.0 kB/s eta 0:00:00
Downloading python_dateutil-2.9.0.post0-py2.py3-none-any.whl (229 kB)
   ---------------------------------------- 229.9/229.9 kB 226.7 kB/s eta 0:00:00
Downloading tensorboard_data_server-0.7.2-py3-none-any.whl (2.4 kB)
Downloading werkzeug-3.0.1-py3-none-any.whl (226 kB)
   ---------------------------------------- 226.7/226.7 kB 157.4 kB/s eta 0:00:00
Downloading cachetools-5.3.3-py3-none-any.whl (9.3 kB)
Downloading importlib_metadata-7.0.1-py3-none-any.whl (23 kB)
Downloading pyasn1_modules-0.3.0-py2.py3-none-any.whl (181 kB)
   ---------------------------------------- 181.3/181.3 kB 179.5 kB/s eta 0:00:00
Downloading requests_oauthlib-1.3.1-py2.py3-none-any.whl (23 kB)
Downloading rsa-4.9-py3-none-any.whl (34 kB)
Downloading oauthlib-3.2.2-py3-none-any.whl (151 kB)
   ---------------------------------------- 151.7/151.7 kB 274.1 kB/s eta 0:00:00
Downloading pyasn1-0.5.1-py2.py3-none-any.whl (84 kB)
   ---------------------------------------- 84.9/84.9 kB 217.1 kB/s eta 0:00:00
Downloading zipp-3.17.0-py3-none-any.whl (7.4 kB)
Building wheels for collected packages: scipy
  Building wheel for scipy (setup.py) ... error
  error: subprocess-exited-with-error

  × python setup.py bdist_wheel did not run successfully.
  │ exit code: 1
  ╰─> [147 lines of output]
      C:\Users\Administrator\AppData\Local\Temp\pip-install-hfguerv1\scipy_0ab0dded0800497a8b3ba689237e2075\setup.py:114: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
        import imp
      D:\Anaconda\envs\gpupytorch\lib\site-packages\numpy\_distributor_init.py:30: UserWarning: loaded more than 1 DLL from .libs:
      D:\Anaconda\envs\gpupytorch\lib\site-packages\numpy\.libs\libopenblas.XWYDX2IKJW2NMTWSFYNGFUWKQU3LYTCZ.gfortran-win_amd64.dll
      D:\Anaconda\envs\gpupytorch\lib\site-packages\numpy\.libs\libopenblas64__v0.3.21-gcc_10_3_0.dll
        warnings.warn("loaded more than 1 DLL from .libs:"
      D:\Anaconda\envs\gpupytorch\lib\site-packages\setuptools\__init__.py:80: _DeprecatedInstaller: setuptools.installer and fetch_build_eggs are deprecated.
      !!

              ********************************************************************************
              Requirements should be satisfied by a PEP 517 installer.
              If you are using pip, you can try `pip install --use-pep517`.
              ********************************************************************************

      !!
        dist.fetch_build_eggs(dist.setup_requires)
      Running from scipy source directory.
      lapack_opt_info:
      lapack_mkl_info:
      No module named 'numpy.distutils._msvccompiler' in numpy.distutils; trying from distutils
      customize MSVCCompiler
        libraries mkl_rt not found in ['D:\\Anaconda\\envs\\gpupytorch\\lib', 'C:\\', 'D:\\Anaconda\\envs\\gpupytorch\\libs', 'D:\\Anaconda\\Library\\lib']
        NOT AVAILABLE

      openblas_lapack_info:
        libraries openblas not found in ['D:\\Anaconda\\envs\\gpupytorch\\lib', 'C:\\', 'D:\\Anaconda\\envs\\gpupytorch\\libs', 'D:\\Anaconda\\Library\\lib']
      get_default_fcompiler: matching types: '['gnu', 'intelv', 'absoft', 'compaqv', 'intelev', 'gnu95', 'g95', 'intelvem', 'intelem', 'flang']'
      customize GnuFCompiler
      Could not locate executable g77
      Could not locate executable f77
      customize IntelVisualFCompiler
      Could not locate executable ifort
      Could not locate executable ifl
      customize AbsoftFCompiler
      Could not locate executable f90
      customize CompaqVisualFCompiler
      Could not locate executable DF
      customize IntelItaniumVisualFCompiler
      Could not locate executable efl
      customize Gnu95FCompiler
      Could not locate executable gfortran
      Could not locate executable f95
      customize G95FCompiler
      Could not locate executable g95
      customize IntelEM64VisualFCompiler
      customize IntelEM64TFCompiler
      Could not locate executable efort
      Could not locate executable efc
      customize PGroupFlangCompiler
      Could not locate executable flang
      don't know how to compile Fortran code on platform 'nt'
        NOT AVAILABLE

      openblas_clapack_info:
        libraries openblas,lapack not found in ['D:\\Anaconda\\envs\\gpupytorch\\lib', 'C:\\', 'D:\\Anaconda\\envs\\gpupytorch\\libs', 'D:\\Anaconda\\Library\\lib']
        NOT AVAILABLE

      flame_info:
        libraries flame not found in ['D:\\Anaconda\\envs\\gpupytorch\\lib', 'C:\\', 'D:\\Anaconda\\envs\\gpupytorch\\libs', 'D:\\Anaconda\\Library\\lib']
        NOT AVAILABLE

      accelerate_info:
        NOT AVAILABLE

      atlas_3_10_threads_info:
      Setting PTATLAS=ATLAS
        libraries lapack_atlas not found in D:\Anaconda\envs\gpupytorch\lib
        libraries tatlas,tatlas not found in D:\Anaconda\envs\gpupytorch\lib
        libraries lapack_atlas not found in C:\
        libraries tatlas,tatlas not found in C:\
        libraries lapack_atlas not found in D:\Anaconda\envs\gpupytorch\libs
        libraries tatlas,tatlas not found in D:\Anaconda\envs\gpupytorch\libs
        libraries lapack_atlas not found in D:\Anaconda\Library\lib
        libraries tatlas,tatlas not found in D:\Anaconda\Library\lib
      <class 'numpy.distutils.system_info.atlas_3_10_threads_info'>
        NOT AVAILABLE

      atlas_3_10_info:
        libraries lapack_atlas not found in D:\Anaconda\envs\gpupytorch\lib
        libraries satlas,satlas not found in D:\Anaconda\envs\gpupytorch\lib
        libraries lapack_atlas not found in C:\
        libraries satlas,satlas not found in C:\
        libraries lapack_atlas not found in D:\Anaconda\envs\gpupytorch\libs
        libraries satlas,satlas not found in D:\Anaconda\envs\gpupytorch\libs
        libraries lapack_atlas not found in D:\Anaconda\Library\lib
        libraries satlas,satlas not found in D:\Anaconda\Library\lib
      <class 'numpy.distutils.system_info.atlas_3_10_info'>
        NOT AVAILABLE

      atlas_threads_info:
      Setting PTATLAS=ATLAS
        libraries lapack_atlas not found in D:\Anaconda\envs\gpupytorch\lib
        libraries ptf77blas,ptcblas,atlas not found in D:\Anaconda\envs\gpupytorch\lib
        libraries lapack_atlas not found in C:\
        libraries ptf77blas,ptcblas,atlas not found in C:\
        libraries lapack_atlas not found in D:\Anaconda\envs\gpupytorch\libs
        libraries ptf77blas,ptcblas,atlas not found in D:\Anaconda\envs\gpupytorch\libs
        libraries lapack_atlas not found in D:\Anaconda\Library\lib
        libraries ptf77blas,ptcblas,atlas not found in D:\Anaconda\Library\lib
      <class 'numpy.distutils.system_info.atlas_threads_info'>
        NOT AVAILABLE

      atlas_info:
        libraries lapack_atlas not found in D:\Anaconda\envs\gpupytorch\lib
        libraries f77blas,cblas,atlas not found in D:\Anaconda\envs\gpupytorch\lib
        libraries lapack_atlas not found in C:\
        libraries f77blas,cblas,atlas not found in C:\
        libraries lapack_atlas not found in D:\Anaconda\envs\gpupytorch\libs
        libraries f77blas,cblas,atlas not found in D:\Anaconda\envs\gpupytorch\libs
        libraries lapack_atlas not found in D:\Anaconda\Library\lib
        libraries f77blas,cblas,atlas not found in D:\Anaconda\Library\lib
      <class 'numpy.distutils.system_info.atlas_info'>
        NOT AVAILABLE

      lapack_info:
        libraries lapack not found in ['D:\\Anaconda\\envs\\gpupytorch\\lib', 'C:\\', 'D:\\Anaconda\\envs\\gpupytorch\\libs', 'D:\\Anaconda\\Library\\lib']
        NOT AVAILABLE

      D:\Anaconda\envs\gpupytorch\lib\site-packages\numpy\distutils\system_info.py:1858: UserWarning:
          Lapack (http://www.netlib.org/lapack/) libraries not found.
          Directories to search for the libraries can be specified in the
          numpy/distutils/site.cfg file (section [lapack]) or by setting
          the LAPACK environment variable.
        return getattr(self, '_calc_info_{}'.format(name))()
      lapack_src_info:
        NOT AVAILABLE

      D:\Anaconda\envs\gpupytorch\lib\site-packages\numpy\distutils\system_info.py:1858: UserWarning:
          Lapack (http://www.netlib.org/lapack/) sources not found.
          Directories to search for the sources can be specified in the
          numpy/distutils/site.cfg file (section [lapack_src]) or by setting
          the LAPACK_SRC environment variable.
        return getattr(self, '_calc_info_{}'.format(name))()
        NOT AVAILABLE

      Traceback (most recent call last):
        File "<string>", line 2, in <module>
        File "<pip-setuptools-caller>", line 34, in <module>
        File "C:\Users\Administrator\AppData\Local\Temp\pip-install-hfguerv1\scipy_0ab0dded0800497a8b3ba689237e2075\setup.py", line 492, in <module>
          setup_package()
        File "C:\Users\Administrator\AppData\Local\Temp\pip-install-hfguerv1\scipy_0ab0dded0800497a8b3ba689237e2075\setup.py", line 488, in setup_package
          setup(**metadata)
        File "D:\Anaconda\envs\gpupytorch\lib\site-packages\numpy\distutils\core.py", line 135, in setup
          config = configuration()
        File "C:\Users\Administrator\AppData\Local\Temp\pip-install-hfguerv1\scipy_0ab0dded0800497a8b3ba689237e2075\setup.py", line 395, in configuration
          raise NotFoundError(msg)
      numpy.distutils.system_info.NotFoundError: No lapack/blas resources found.
      [end of output]

  note: This error originates from a subprocess, and is likely not a problem with pip.
  ERROR: Failed building wheel for scipy
  Running setup.py clean for scipy
  error: subprocess-exited-with-error

  × python setup.py clean did not run successfully.
  │ exit code: 1
  ╰─> [15 lines of output]
      C:\Users\Administrator\AppData\Local\Temp\pip-install-hfguerv1\scipy_0ab0dded0800497a8b3ba689237e2075\setup.py:114: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses
        import imp
      D:\Anaconda\envs\gpupytorch\lib\site-packages\numpy\_distributor_init.py:30: UserWarning: loaded more than 1 DLL from .libs:
      D:\Anaconda\envs\gpupytorch\lib\site-packages\numpy\.libs\libopenblas.XWYDX2IKJW2NMTWSFYNGFUWKQU3LYTCZ.gfortran-win_amd64.dll
      D:\Anaconda\envs\gpupytorch\lib\site-packages\numpy\.libs\libopenblas64__v0.3.21-gcc_10_3_0.dll
        warnings.warn("loaded more than 1 DLL from .libs:"

      `setup.py clean` is not supported, use one of the following instead:

        - `git clean -xdf` (cleans all files)
        - `git clean -Xdf` (cleans all versioned files, doesn't touch
                            files that aren't checked into the git repo)

      Add `--force` to your command to use it anyway if you must (unsupported).

      [end of output]

  note: This error originates from a subprocess, and is likely not a problem with pip.
  ERROR: Failed cleaning build dir for scipy
Failed to build scipy
ERROR: Could not build wheels for scipy, which is required to install pyproject.toml-based projects

(gpupytorch) D:\PlugWheel>pip install -r E:\DeepLearningModel\Model01\requirements.txt
Requirement already satisfied: torch==2.2.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from -r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (2.2.0+cpu)
Requirement already satisfied: torchvision==0.17.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from -r E:\DeepLearningModel\Model01\requirements.txt (line 2)) (0.17.0+cpu)
Collecting tensorboard (from -r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Using cached tensorboard-2.14.0-py3-none-any.whl.metadata (1.8 kB)
Collecting scipy==1.6.1 (from -r E:\DeepLearningModel\Model01\requirements.txt (line 4))
  Downloading scipy-1.6.1-cp38-cp38-win_amd64.whl.metadata (2.0 kB)
Collecting numpy==1.17.3 (from -r E:\DeepLearningModel\Model01\requirements.txt (line 5))
  Using cached numpy-1.17.3-cp38-cp38-win_amd64.whl.metadata (2.0 kB)
Collecting matplotlib==3.1.2 (from -r E:\DeepLearningModel\Model01\requirements.txt (line 6))
  Using cached matplotlib-3.1.2-cp38-cp38-win_amd64.whl.metadata (1.4 kB)
Collecting opencv_python==4.1.2.30 (from -r E:\DeepLearningModel\Model01\requirements.txt (line 7))
  Using cached opencv_python-4.1.2.30-cp38-cp38-win_amd64.whl.metadata (11 kB)
Collecting tqdm==4.60.0 (from -r E:\DeepLearningModel\Model01\requirements.txt (line 8))
  Using cached tqdm-4.60.0-py2.py3-none-any.whl.metadata (57 kB)
Requirement already satisfied: Pillow==10.2.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from -r E:\DeepLearningModel\Model01\requirements.txt (line 9)) (10.2.0)
Requirement already satisfied: h5py==2.10.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from -r E:\DeepLearningModel\Model01\requirements.txt (line 10)) (2.10.0)
Requirement already satisfied: filelock in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (3.13.1)
Requirement already satisfied: typing-extensions>=4.8.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (4.10.0)
Requirement already satisfied: sympy in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (1.12)
Requirement already satisfied: networkx in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (3.1)
Requirement already satisfied: jinja2 in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (3.1.3)
Requirement already satisfied: fsspec in d:\anaconda\envs\gpupytorch\lib\site-packages (from torch==2.2.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (2024.2.0)
Requirement already satisfied: requests in d:\anaconda\envs\gpupytorch\lib\site-packages (from torchvision==0.17.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 2)) (2.31.0)
Collecting cycler>=0.10 (from matplotlib==3.1.2->-r E:\DeepLearningModel\Model01\requirements.txt (line 6))
  Using cached cycler-0.12.1-py3-none-any.whl.metadata (3.8 kB)
Collecting kiwisolver>=1.0.1 (from matplotlib==3.1.2->-r E:\DeepLearningModel\Model01\requirements.txt (line 6))
  Using cached kiwisolver-1.4.5-cp38-cp38-win_amd64.whl.metadata (6.5 kB)
Collecting pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 (from matplotlib==3.1.2->-r E:\DeepLearningModel\Model01\requirements.txt (line 6))
  Using cached pyparsing-3.1.1-py3-none-any.whl.metadata (5.1 kB)
Collecting python-dateutil>=2.1 (from matplotlib==3.1.2->-r E:\DeepLearningModel\Model01\requirements.txt (line 6))
  Using cached python_dateutil-2.9.0.post0-py2.py3-none-any.whl.metadata (8.4 kB)
Requirement already satisfied: six in d:\anaconda\envs\gpupytorch\lib\site-packages (from h5py==2.10.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 10)) (1.16.0)
Collecting absl-py>=0.4 (from tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Using cached absl_py-2.1.0-py3-none-any.whl.metadata (2.3 kB)
Collecting grpcio>=1.48.2 (from tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Using cached grpcio-1.62.0-cp38-cp38-win_amd64.whl.metadata (4.2 kB)
Collecting google-auth<3,>=1.6.3 (from tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Using cached google_auth-2.28.1-py2.py3-none-any.whl.metadata (4.7 kB)
Collecting google-auth-oauthlib<1.1,>=0.5 (from tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Using cached google_auth_oauthlib-1.0.0-py2.py3-none-any.whl.metadata (2.7 kB)
Collecting markdown>=2.6.8 (from tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Using cached Markdown-3.5.2-py3-none-any.whl.metadata (7.0 kB)
Collecting protobuf>=3.19.6 (from tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Using cached protobuf-4.25.3-cp38-cp38-win_amd64.whl.metadata (541 bytes)
Requirement already satisfied: setuptools>=41.0.0 in d:\anaconda\envs\gpupytorch\lib\site-packages (from tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3)) (68.2.2)
Collecting tensorboard-data-server<0.8.0,>=0.7.0 (from tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Using cached tensorboard_data_server-0.7.2-py3-none-any.whl.metadata (1.1 kB)
Collecting werkzeug>=1.0.1 (from tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Using cached werkzeug-3.0.1-py3-none-any.whl.metadata (4.1 kB)
Requirement already satisfied: wheel>=0.26 in d:\anaconda\envs\gpupytorch\lib\site-packages (from tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3)) (0.41.2)
Collecting cachetools<6.0,>=2.0.0 (from google-auth<3,>=1.6.3->tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Using cached cachetools-5.3.3-py3-none-any.whl.metadata (5.3 kB)
Collecting pyasn1-modules>=0.2.1 (from google-auth<3,>=1.6.3->tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Using cached pyasn1_modules-0.3.0-py2.py3-none-any.whl.metadata (3.6 kB)
Collecting rsa<5,>=3.1.4 (from google-auth<3,>=1.6.3->tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Using cached rsa-4.9-py3-none-any.whl.metadata (4.2 kB)
Collecting requests-oauthlib>=0.7.0 (from google-auth-oauthlib<1.1,>=0.5->tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Using cached requests_oauthlib-1.3.1-py2.py3-none-any.whl.metadata (10 kB)
Collecting importlib-metadata>=4.4 (from markdown>=2.6.8->tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Using cached importlib_metadata-7.0.1-py3-none-any.whl.metadata (4.9 kB)
Requirement already satisfied: charset-normalizer<4,>=2 in d:\anaconda\envs\gpupytorch\lib\site-packages (from requests->torchvision==0.17.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 2)) (3.3.2)
Requirement already satisfied: idna<4,>=2.5 in d:\anaconda\envs\gpupytorch\lib\site-packages (from requests->torchvision==0.17.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 2)) (3.6)
Requirement already satisfied: urllib3<3,>=1.21.1 in d:\anaconda\envs\gpupytorch\lib\site-packages (from requests->torchvision==0.17.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 2)) (2.2.1)
Requirement already satisfied: certifi>=2017.4.17 in d:\anaconda\envs\gpupytorch\lib\site-packages (from requests->torchvision==0.17.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 2)) (2024.2.2)
Requirement already satisfied: MarkupSafe>=2.1.1 in d:\anaconda\envs\gpupytorch\lib\site-packages (from werkzeug>=1.0.1->tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3)) (2.1.5)
Requirement already satisfied: mpmath>=0.19 in d:\anaconda\envs\gpupytorch\lib\site-packages (from sympy->torch==2.2.0->-r E:\DeepLearningModel\Model01\requirements.txt (line 1)) (1.3.0)
Collecting zipp>=0.5 (from importlib-metadata>=4.4->markdown>=2.6.8->tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Using cached zipp-3.17.0-py3-none-any.whl.metadata (3.7 kB)
Collecting pyasn1<0.6.0,>=0.4.6 (from pyasn1-modules>=0.2.1->google-auth<3,>=1.6.3->tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Using cached pyasn1-0.5.1-py2.py3-none-any.whl.metadata (8.6 kB)
Collecting oauthlib>=3.0.0 (from requests-oauthlib>=0.7.0->google-auth-oauthlib<1.1,>=0.5->tensorboard->-r E:\DeepLearningModel\Model01\requirements.txt (line 3))
  Using cached oauthlib-3.2.2-py3-none-any.whl.metadata (7.5 kB)
Downloading scipy-1.6.1-cp38-cp38-win_amd64.whl (32.7 MB)
   ---------------------------------------- 32.7/32.7 MB 280.8 kB/s eta 0:00:00
Using cached numpy-1.17.3-cp38-cp38-win_amd64.whl (12.7 MB)
Using cached matplotlib-3.1.2-cp38-cp38-win_amd64.whl (9.1 MB)
Using cached opencv_python-4.1.2.30-cp38-cp38-win_amd64.whl (33.0 MB)
Using cached tqdm-4.60.0-py2.py3-none-any.whl (75 kB)
Using cached tensorboard-2.14.0-py3-none-any.whl (5.5 MB)
Using cached absl_py-2.1.0-py3-none-any.whl (133 kB)
Using cached cycler-0.12.1-py3-none-any.whl (8.3 kB)
Using cached google_auth-2.28.1-py2.py3-none-any.whl (186 kB)
Using cached google_auth_oauthlib-1.0.0-py2.py3-none-any.whl (18 kB)
Using cached grpcio-1.62.0-cp38-cp38-win_amd64.whl (3.8 MB)
Using cached kiwisolver-1.4.5-cp38-cp38-win_amd64.whl (56 kB)
Using cached Markdown-3.5.2-py3-none-any.whl (103 kB)
Using cached protobuf-4.25.3-cp38-cp38-win_amd64.whl (413 kB)
Using cached pyparsing-3.1.1-py3-none-any.whl (103 kB)
Using cached python_dateutil-2.9.0.post0-py2.py3-none-any.whl (229 kB)
Using cached tensorboard_data_server-0.7.2-py3-none-any.whl (2.4 kB)
Using cached werkzeug-3.0.1-py3-none-any.whl (226 kB)
Using cached cachetools-5.3.3-py3-none-any.whl (9.3 kB)
Using cached importlib_metadata-7.0.1-py3-none-any.whl (23 kB)
Using cached pyasn1_modules-0.3.0-py2.py3-none-any.whl (181 kB)
Using cached requests_oauthlib-1.3.1-py2.py3-none-any.whl (23 kB)
Using cached rsa-4.9-py3-none-any.whl (34 kB)
Using cached oauthlib-3.2.2-py3-none-any.whl (151 kB)
Using cached pyasn1-0.5.1-py2.py3-none-any.whl (84 kB)
Using cached zipp-3.17.0-py3-none-any.whl (7.4 kB)
Installing collected packages: zipp, werkzeug, tqdm, tensorboard-data-server, python-dateutil, pyparsing, pyasn1, protobuf, oauthlib, numpy, kiwisolver, grpcio, cycler, cachetools, absl-py, scipy, rsa, requests-oauthlib, pyasn1-modules, opencv_python, matplotlib, importlib-metadata, markdown, google-auth, google-auth-oauthlib, tensorboard
  Attempting uninstall: tqdm
    Found existing installation: tqdm 4.62.2
    Uninstalling tqdm-4.62.2:
      Successfully uninstalled tqdm-4.62.2
  Attempting uninstall: numpy
    Found existing installation: numpy 1.21.2
    Uninstalling numpy-1.21.2:
      Successfully uninstalled numpy-1.21.2
  Attempting uninstall: scipy
    Found existing installation: scipy 1.7.1
    Uninstalling scipy-1.7.1:
      Successfully uninstalled scipy-1.7.1
  Attempting uninstall: opencv_python
    Found existing installation: opencv-python 4.5.3.56
    Uninstalling opencv-python-4.5.3.56:
      Successfully uninstalled opencv-python-4.5.3.56
Successfully installed absl-py-2.1.0 cachetools-5.3.3 cycler-0.12.1 google-auth-2.28.1 google-auth-oauthlib-1.0.0 grpcio-1.62.0 importlib-metadata-7.0.1 kiwisolver-1.4.5 markdown-3.5.2 matplotlib-3.1.2 numpy-1.17.3 oauthlib-3.2.2 opencv_python-4.1.2.30 protobuf-4.25.3 pyasn1-0.5.1 pyasn1-modules-0.3.0 pyparsing-3.1.1 python-dateutil-2.9.0.post0 requests-oauthlib-1.3.1 rsa-4.9 scipy-1.6.1 tensorboard-2.14.0 tensorboard-data-server-0.7.2 tqdm-4.60.0 werkzeug-3.0.1 zipp-3.17.0

(gpupytorch) D:\PlugWheel>

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1491376.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

仓储仓库广播-仓储仓库无线应急广播对讲智能管理系统建设重点解析

仓储仓库广播-仓储仓库无线应急广播对讲智能管理系统建设重点解析 北京海特伟业科技有限公司任洪卓发表于 2024年3月5日 一、仓储仓库无线应急对讲广播系统客户需求 中央储备粮北京某某直属库&#xff0c;为国有粮食仓储企业&#xff0c;具备30多个粮食储备仓和8个成品油储备…

鸿蒙(HarmonyOS)项目方舟框架(ArkUI)之Scroll容器组件

鸿蒙&#xff08;HarmonyOS&#xff09;项目方舟框架&#xff08;ArkUI&#xff09;之Scroll容器组件 一、操作环境 操作系统: Windows 10 专业版、IDE:DevEco Studio 3.1、SDK:HarmonyOS 3.1 二、Scroll容器组件 可滚动的容器组件&#xff0c;当子组件的布局尺寸超过父组件…

JavaScript观察者模式:实现对象间的事件通信!

&#x1f90d; 前端开发工程师、技术日更博主、已过CET6 &#x1f368; 阿珊和她的猫_CSDN博客专家、23年度博客之星前端领域TOP1 &#x1f560; 牛客高级专题作者、打造专栏《前端面试必备》 、《2024面试高频手撕题》 &#x1f35a; 蓝桥云课签约作者、上架课程《Vue.js 和 E…

CDC控制仿真--综合实验,模型+代码

一、工况设置 加减速&#xff1a;从0开始加速--匀速40Km/h--减速至0&#xff1b; 转向&#xff1a;在道路65m~70m之间&#xff0c;有一个转向变道再回来的避障动作。 路面设置&#xff1a;C级路面&#xff0c;300m处&#xff0c;设置高30mm的减速带。 二、实验目标 1、对比车…

VBA技术资料MF126:移动或复制文件到新创建的文件夹

我给VBA的定义&#xff1a;VBA是个人小型自动化处理的有效工具。利用好了&#xff0c;可以大大提高自己的工作效率&#xff0c;而且可以提高数据的准确度。“VBA语言専攻”提供的教程一共九套&#xff0c;分为初级、中级、高级三大部分&#xff0c;教程是对VBA的系统讲解&#…

前端- 基础 表单标签 - 使用场景及组成

大家都有到银行去办理业务的时候&#xff0c;大多数情况下会填一些 纸质的表之类的东西如下图 而我们在网页中也会经常遇到 像现实生活中在银行填表那样的情景&#xff0c;如下图 &#xff1a; 上示就是 网页中的表单的使用场景了 表单标签 &#xff1a; 为什么需要表单 …

PMP和NPDP持证人员福利大曝光!全国这些城市都可…

近年来&#xff0c;各个城市之间为争夺人才竞争更加激烈。为了吸引具备国际职业资格认证的人才&#xff0c;各大城市纷纷制定了相关优惠和福利政策。这些政策旨在鼓励重点行业领域的用人单位采取更加优化的方式吸引海外高端人才。目前&#xff0c;已经有多个城市针对项目管理及…

【优选算法】前缀和

前缀和思想其实就是一种简单的dp思想&#xff0c;也就是动态规划 什么时候用到前缀和&#xff1f;当要快速求出数组中某一个区间的和 前缀和模板 暴力解法 定义一个指针从左向右遍历&#xff0c;并且累加值即可&#xff0c;这里就不过多赘述&#xff0c;主要还是来看前缀和…

MyBatis3源码深度解析(三)Connnection

文章目录 前言2.3 Connnection2.3.1 JDBC驱动程序的类型2.3.1.1 JDBC-ODBC Bridge Driver2.3.1.2 Native API Driver2.3.1.3 HDBC-Net Driver2.3.1.4 Native Protocol Driver 2.3.2 java.sql.Driver2.3.2.1 静态代码块加载驱动类2.3.2.2 SPI机制加载驱动类 2.3.3 DriverManager…

06 - ip route和route -n的区别

1 ip route和route -n的区别 ip route 和 route -n 都是用于查看和管理Linux系统路由表的命令。但下面是它们的区别&#xff1a; ip route&#xff1a;是Linux系统中的现代工具&#xff0c;它属于iproute2套件&#xff1b;它提供了更多的选项&#xff0c;可以更精确地控制路由表…

详细分析Linux内存知识并释放内存

目录 前言1. 基本知识1.1 free1.2 cat /proc/meminfo1.3 slabtop 2. 清空内存 前言 本篇文章主要分析内存 如果是磁盘空间&#xff0c;推荐阅读&#xff1a;服务器出现根目录磁盘满了解决方法 1. 基本知识 在Linux系统中&#xff0c;查看内存的基本知识包括以下几个方面&…

解决手机连接校园网同一设备老是需要重复认证的问题(+解决原理)

相信大家平时在使用校园网的时候总会遇到同一设备隔三岔五就要重复认证绑定的问题&#xff0c;这里直接附上解决方案。 打开手机的wifi-->连接校园网然后进入设置-->在隐私选项选择“使用设备MAC” 如下图&#xff0c;问题解决了&#xff01;如果想知道原理的可以继续往…

RN开发搬砖经验之-Android平台下处理后退按钮事件

基本接口 利用RN 针对Android平台提供的接口 BackHandler BackHandler需要区分类组件跟函数组件的场景&#xff0c;主要是两个组件一个基于组件生命周期的&#xff0c;一个是基于hook的&#xff0c;即注册BackHandler的事件监听与移除时机写法不同。 类组件 示例代码 impor…

24/03/05总结

easyx: #include "iostream" #include "easyx.h" #include "cstdio" using namespace std; int main() {initgraph(800, 600);setorigin(400, 300);setaspectratio(1, -1);//绘制多边形:polygon(const POINT *points,int num);//points 是一个P…

Python从0到100(二):Python语言介绍及第一个Pyhon程序

前言&#xff1a; 零基础学Python&#xff1a;Python从0到100最新最全教程。 想做这件事情很久了&#xff0c;这次我更新了自己所写过的所有博客&#xff0c;汇集成了Python从0到100&#xff0c;共一百节课&#xff0c;帮助大家一个月时间里从零基础到学习Python基础语法、Pyth…

输出X^N对233333取模的结果。

对任意正整数N&#xff0c;求XN%233333的值。 要求运算的时间复杂度为O(logN)。 例如X30 X15*X15X15X7*X7*XX7X3*X3*XX3X*X*X共7次乘法运算完毕。输入输出格式 输入描述: 输入两个整数X和N&#xff0c;用空格隔开&#xff0c;其中X,N<10^9。 输出描述: 输出X^N对233333取模…

【排序】详解选择排序

一、思想 选择排序的原理与思想非常直观和简单&#xff0c;它通过不断地选择未排序部分的最小&#xff08;或最大&#xff09;元素&#xff0c;并将其放到已排序部分的末尾来实现排序。 具体来说&#xff0c;选择排序的过程可以分解为以下几个步骤&#xff1a; 寻找最小&…

Android m/mm/mmm/make编译模块

一.编译成模块的前置条件 Android编译环境初始化完成后&#xff0c;我们就可以用m/mm/mmm/make命令编译源代码了。lunch命令其实是定义在build/envsetup.sh文件中的函数lunch提供的。与lunch命令一样&#xff0c;m、mm和mmm命令也分别是由定义在build/envsetup.sh文件中的函数…

防火墙:网络防御的第一道防线

目录 引言 一、安全技术与防火墙 &#xff08;一&#xff09;安全技术 &#xff08;二&#xff09;防火墙的主要功能与分类 1.防火墙的主要功能 2.防火墙的分类 二、Linux防火墙的基本认识 &#xff08;一&#xff09;Netfilter &#xff08;二&#xff09;防火墙工具…

OSPF 完全stub区域实验简述

1、OSPF 完全stub区域配置 为解决末端区域维护过大LSDB带来的问题&#xff0c;通过配置stub no-summary 完全stub,仅支持1类、2类LSA&#xff0c;ABR产生1条3类默认路由。 实验拓扑图 r1: sys sysname r1 undo info enable int loopb 0 ip add 1.1.1.1 32 quit int e0/0/0 ip …