高维中介数据:基于交替方向乘子法(ADMM)的高维度单模态中介模型的参数估计(入门+实操)

news2025/1/25 4:45:31

全文摘要

 用于高维度单模态中介模型的参数估计,采用交替方向乘子法(ADMM)进行计算。该包提供了确切独立筛选(SIS)功能来提高中介效应的敏感性和特异性,并支持Lasso、弹性网络、路径Lasso和网络约束惩罚等不同正则化方法。

Pathway Lasso

背景

传统的结构方程建模(SEM)在处理大量中介变量时变得不稳定且计算复杂。Pathway Lasso引入了一个新的惩罚函数,它是一种非凸乘积函数的凸松弛,使得同时估计和选择路径效应成为可能。通过使用交替方向乘子法(ADMM)的算法,Pathway Lasso可以以闭合形式求解参数,并且其估计器在大样本下具有渐近一致性。Pathway Lasso的新方法用于在高维中介变量的情况下估计和选择路径效应。

实现方法

Pathway Lasso是一种针对高维中介变量问题的新方法,它通过结构方程建模(SEM)的正则化途径来处理。在高维设置中,当中介变量的数量接近或大于样本量时,该方法聚焦于估计和选择路径效应。为了改善估计的稳定性,Pathway Lasso避免将高维中介变量直接降低为线性组合,这通常是通过主成分分析(PCA)或其他矩阵分解技术实现的,但这些方法限制了对每个中介路径的解释性。相反,Pathway Lasso引入了一个新的凸惩罚项,即Pathway Lasso惩罚,直接对路径效应进行正则化。这种方法解决了传统Lasso和其他凸正则化方法无法处理的乘积参数问题,因为路径效应通常表示为两个参数的乘积,这是一个非凸函数。通过Pathway Lasso惩罚,可以同时实现路径选择和路径效应估计,允许模型直接处理相关中介变量,提供更直接和简单的中介路径解释,尤其适用于分析多个大脑区域作为中介变量的情况

Pathway Lasso的优势

在路径选择和估计准确性方面相较于其他方法具有以下优势

  • 高路径选择准确性:在模拟数据和fMRI数据集上的应用表明,Pathway Lasso 提出的方法比其他方法具有更高的路径选择准确性。
  • 低估计偏误:Pathway Lasso 方法在估计路径效应时表现出更低的偏差。
  • 解决非凸性问题:Pathway Lasso 引入了一个新的凸惩罚,直接对乘积非凸函数进行正则化,解决了现有方法未处理的问题。
  • 直接和明确的解释性:与使用线性组合(如主成分分析)的方法相比,Pathway Lasso 允许对每个中介路径进行更直接和更简单的解释。
  • 处理相关中介变量:Pathway Lasso 允许直接建模相关中介变量,适合分析多个大脑区域作为中介的设置。

实现方法

随机生成单模态高维度中介分析数据

代码格式

modalityMediationDataGen(
  n = 100,
  p = 50,
  sigmaY = 1,
  sizeNonZero = c(3, 3, 4),
  alphaMean = c(6, 4, 2),
  alphaSd = 0.1,
  betaMean = c(6, 4, 2),
  betaSd = 0.1,
  sigmaM1 = NULL,
  gamma = 3,
  generateLaplacianMatrix = FALSE,
  seed = 20231201
)

 参数说明

n: 高维中介模型中的主体数量。
p: 高维中介变量的数量。
sigmaY: 因变量误差分布的标准差。
sizeNonZero: 非零中介变量的数量,生成大、中、小中介效应的模拟场景。
alphaMean, alphaSd: 中介变量与自变量之间效应的平均值和标准差向量。
betaMean, betaSd: 中介变量与因变量之间效应的平均值和标准差向量。
sigmaM1: 中介变量间误差分布的协方差矩阵,默认为对角矩阵。
gamma: 直接效应的真值。
generateLaplacianMatrix: 逻辑值,指定是否生成网络惩罚的拉普拉斯矩阵。
seed: 随机种子,默认为NULL以使用当前种子

返回结果解释

MediData: 高维中介模型的模拟数据。
MediPara: 中介效应和直接效应的真值。
Info: 输出包括随机种子、参数设置以及生成中介模型的拉普拉斯矩阵。

示例代码 

## 生成分析数据
simuData <- modalityMediationDataGen(seed = 20231201)
str(simuData)
# 输出结果如下
# List of 3
# $ MediData:List of 3
# ..$ X : num [1:100, 1] 0 0 1 0 0 0 1 0 0 1 ...
# ..$ M1: num [1:100, 1:50] 1.023 -0.369 4.812 1.476 0.188 ...
# ..$ Y : num [1:100, 1] -10.27 6.54 175.08 -1.66 17.55 ...
# $ MediPara:List of 3
# ..$ alpha: num [1, 1:50] 5.99 5.99 6 4.11 4.17 ...
# ..$ beta : num [1:50, 1] 6.11 5.96 6.01 4.05 3.88 ...
# ..$ gamma: num [1, 1] 3
# $ Info    :List of 4
# ..$ parameters     :List of 7
# .. ..$ sigmaY     : num 1
# .. ..$ sizeNonZero: num [1:3] 3 3 4
# .. ..$ alphaMean  : num [1:3] 6 4 2
# .. ..$ alphaSd    : num [1:3] 0.1 0.1 0.1
# .. ..$ betaMean   : num [1:3] 6 4 2
# .. ..$ betaSd     : num [1:3] 0.1 0.1 0.1
# .. ..$ sigmaM1    : num [1:50, 1:50] 1 0 0 0 0 0 0 0 0 0 ...
# ..$ trueValue      :List of 1
# .. ..$ gamma: num [1, 1] 3
# ..$ laplacianMatrix: NULL
# ..$ seed           : num 20231201

simuData <- modalityMediationDataGen(seed = 20231201, generateLaplacianMatrix = TRUE)
str(simuData)
simuData <- modalityMediationDataGen(n = 50, p = 1000, seed = 20231201)
str(simuData)

交叉验证:cvSingleModalityAdmm

通过设置`numFolds`参数进行交叉验证,可以评估不同惩罚参数下的模型性能,帮助选择最佳模型

`交叉验证的结果,用于评估不同参数组合下Pathway Lasso惩罚方法的效果。输出结果是一个表格,其中包含以下列:

1. **rho**:这是ADMM算法中的ρ参数的候选值,它影响算法的收敛速度和解的质量。
2. **lambda1a**:Pathway Lasso惩罚中的λ1a参数的候选值,L1 范数惩罚中介变量和自变量之间的影响。
3. **lambda1b**:Pathway Lasso惩罚中的λ1b参数的候选值,中介变量和因变量之间影响的 L1 范数惩罚。
4. **lambda1g**:Pathway Lasso惩罚中的λ1g参数的候选值,直接效应的 L1 范数惩罚。默认值为 10 以解决高估问题。
5. **kappa**:Pathway Lasso惩罚的L1范数参数,控制路径正则化的具体形式。控制了路径结构的稀疏性,当 kappa 较小时,惩罚的作用更加平滑,有利于保留更多的特征;当 kappa 较大时,惩罚更加集中,有利于稀疏性,即更多特征被剔除。
6. **nu**:Pathway Lasso惩罚的L2范数参数,同样影响路径正则化。nu: 控制了路径结构中特征之间的相关性,当 nu 较小时,路径结构更加独立,有利于减少特征之间的相关性;当 nu 较大时,更多的特征将共享相同的路径,有助于保留相关性较强的特征。
7. **measure**:评估指标,默认均方根误差(RMSE),用于衡量预测结果与真实结果之间的差异。低的RMSE值通常意味着更好的模型性能,因为这表示预测误差更小。通过比较这些结果,可以选取最优的参数组合来构建最终模型。

8. lambda2alambda2b: 是 Pathway Lasso 方法中额外引入的惩罚项的参数。它们可以控制特征之间的相关性,帮助更好地保留特征间的相关性信息。

  • lambda2a:L2 范数惩罚中介变量和自变量之间的影响
  • lambda2b:中介变量和因变量之间影响的 L2 范数惩罚
# 2种不同的惩罚方法

## 1.使用交叉验证进行 ElasticNet 惩罚参数调优
# 执行交叉验证
cvElasticNetResults <- cvSingleModalityAdmm(
  X = simuData$MediData$X,  # 独立变量的数据矩阵(暴露/治疗/组)
  Y = simuData$MediData$Y,  # 因变量的数据向量(结果响应)
  M1 = simuData$MediData$M1,  # 单模态中介变量
  numFolds = 5,  # 交叉验证的折数
  typeMeasure = "rmse",  # 评估指标类型,默认为均方根误差
  rho = c(0.9, 1, 1.1),  # rho 参数的候选值序列
  lambda1a = c(0.1, 0.5, 1),  # lambda1a 参数的候选值序列
  lambda1b = c(0.1, 0.3),  # lambda1b 参数的候选值序列
  lambda1g = c(1, 2),  # lambda1g 参数的候选值序列
  lambda2a = c(0.5, 1),  # lambda2a 参数的候选值序列
  lambda2b = c(0.5, 1),  # lambda2b 参数的候选值序列
  penalty = "ElasticNet"  # 使用 ElasticNet 惩罚
)

# 输出结果: 
> cvElasticNetResults
       rho lambda1a lambda1b lambda1g lambda2a lambda2b  measure
  [1,] 0.9      0.1      0.1        1      0.5      0.5 18.23108
  [2,] 1.0      0.1      0.1        1      0.5      0.5 18.32964
  [3,] 1.1      0.1      0.1        1      0.5      0.5 18.17303
  [4,] 0.9      0.5      0.1        1      0.5      0.5 17.77722
  [5,] 1.0      0.5      0.1        1      0.5      0.5 17.78040
  [6,] 1.1      0.5      0.1        1      0.5      0.5 17.77446
  [7,] 0.9      1.0      0.1        1      0.5      0.5 17.80479
[到达getOption("max.print") -- 略过很多行]]
attr(,"class")
[1] "cvSingleModalityAdmm"

--------------------------------------------------------------------------
# 2. 使用交叉验证进行 Pathway Lasso 惩罚参数调优(lambda2a, lambda2b 未调整)
# 执行交叉验证
cvPathwayLassoResults <- cvSingleModalityAdmm(
  X = simuData$MediData$X,  # 独立变量的数据矩阵(暴露/治疗/组)
  Y = simuData$MediData$Y,  # 因变量的数据向量(结果响应)
  M1 = simuData$MediData$M1,  # 单模态中介变量
  numFolds = 5,  # 交叉验证的折数
  typeMeasure = "rmse",  # 评估指标类型,默认为均方根误差
  rho = c(0.9, 1, 1.1),  # rho 参数的候选值序列
  lambda1a = c(0.1, 0.5, 1),  # lambda1a 参数的候选值序列
  lambda1b = c(0.1, 0.3),  # lambda1b 参数的候选值序列
  lambda1g = c(1, 2),  # lambda1g 参数的候选值序列
  lambda2a = 1,  # 给定 lambda2a 参数值
  lambda2b = 1,  # 给定 lambda2b 参数值
  penalty = "PathwayLasso",  # 使用 Pathway Lasso 惩罚
  penaltyParameterList = list(kappa = c(0.5, 1), nu = c(1, 2))  # 惩罚参数列表,包括 kappa 和 nu
)

# 输出结果:
cvPathwayLassoResults
       rho lambda1a lambda1b lambda1g kappa nu  measure
  [1,] 0.9      0.1      0.1        1   0.5  1 19.46943
  [2,] 1.0      0.1      0.1        1   0.5  1 19.37725
  [3,] 1.1      0.1      0.1        1   0.5  1 19.40920
  [4,] 0.9      0.5      0.1        1   0.5  1 19.49747
[到达getOption("max.print") -- 略过很多行]]
attr(,"class")
[1] "cvSingleModalityAdmm"

将权矩阵转换为拉普拉斯矩阵的辅助函数:weightToLaplacian() 

# 将权矩阵转换为拉普拉斯矩阵的辅助函数:weightToLaplacian() 
set.seed(20231201) # 设置随机数种子
p <- 5 # 设置节点数
W <- matrix(0, nrow = p, ncol = p) # 初始化权矩阵
W[lower.tri(W)] <- runif(p*(p-1)/2, 0, 1) # 生成随机权的下三角矩阵
W[upper.tri(W)] <- t(W)[upper.tri(W)] # 使权矩阵对称
diag(W) <- 1 # 对角线元素设为1
W
# 输出结果如下
# [,1]      [,2]       [,3]      [,4]       [,5]
# [1,] 1.0000000 0.1623753 0.48119340 0.4406640 0.36219565
# [2,] 0.1623753 1.0000000 0.41138920 0.1344408 0.64471664
# [3,] 0.4811934 0.4113892 1.00000000 0.5306324 0.08042435
# [4,] 0.4406640 0.1344408 0.53063239 1.0000000 0.85450197
# [5,] 0.3621956 0.6447166 0.08042435 0.8545020 1.00000000

(L <- weightToLaplacian(W)) # 将权矩阵转换为拉普拉斯矩阵
# 输出结果如下
# [,1]        [,2]        [,3]        [,4]        [,5]
# [1,]  0.59124083 -0.06767837 -0.19443191 -0.16374871 -0.13501050
# [2,] -0.06767837  0.57499652 -0.16949748 -0.05094059 -0.24505056
# [3,] -0.19443191 -0.16949748  0.60058145 -0.19491464 -0.02963414
# [4,] -0.16374871 -0.05094059 -0.19491464  0.66218945 -0.28956112
# [5,] -0.13501050 -0.24505056 -0.02963414 -0.28956112  0.66007653

拟合高维单模态中介模型

根据cvSingleModalityAdmm的结果挑选最佳参数,拟合🔤高维单模态中介模型🔤

penalty方法

penalty方法有3种+ 各自对应的惩罚参数列表【penaltyParameterList】

  • 默认为弹性网络 ElasticNet
    • lambda1a, lambda1b, lambda1g, lambda2a, lambda2b
  • 路径套索(PathywayLasso)
    • kappa 路径 Lasso 的 L1 范数惩罚。
    • nu 路径 Lasso 的 L2 范数惩罚
  • 网络约束惩罚(Network)
    • 需要应用于网络惩罚的拉普拉斯矩阵

确定独立性筛选 (SIS)

SIS:指定是否执行确定独立性筛选 (sure independence screening, SIS)

  • SISThreshold,中介者目标降维的阈值。默认值为“2”,这会将维度减少到 2*n/log(n)。n代表样本量

输出结果

  • gamma:🔤估计直接影响🔤
  • alpha:🔤估计中介变量和自变量之间的影响。🔤
  • beta:🔤估计中介变量和因变量之间的影响🔤

综合应用

1. ElasticNet 惩罚
## 生成经验数据
simuData <- modalityMediationDataGen(seed = 20231201, generateLaplacianMatrix = TRUE)

## ElasticNet 惩罚的参数估计
modelElasticNet <- singleModalityAdmm( X = simuData$MediData$X, Y = simuData$MediData$Y, M1 = simuData$MediData$M1, rho = 1, lambda1a = 1, lambda1b = 0.1, lambda1g = 2, lambda2a = 1, lambda2b = 1, penalty = "ElasticNet" )

# 拟合并预测
fitted(modelElasticNet) 
predict(modelElasticNet, matrix(c(0, 1), ncol=1))

# SIS独立性筛选
simuData <- modalityMediationDataGen(n = 50, p = 1000, seed = 20231201)
modelElasticNetSIS <- singleModalityAdmm( X = simuData$MediData$X, Y = simuData$MediData$Y, M1 = simuData$MediData$M1, rho = 1, lambda1a = 1, lambda1b = 0.1, lambda1g = 2, lambda2a = 1, lambda2b = 1, penalty = "ElasticNet", SIS = TRUE ) 

fitted(modelElasticNetSIS) 
predict(modelElasticNetSIS, matrix(c(0, 1), ncol=1))
2. 使用拉普拉斯矩阵进行网络惩罚的参数估计

# 1.使用模拟数据中的拉普拉斯矩阵
simuData <- modalityMediationDataGen(seed = 20231201, generateLaplacianMatrix = TRUE)

modelNetwork <- singleModalityAdmm( X = simuData$MediData$X, Y = simuData$MediData$Y, M1 = simuData$MediData$M1, rho = 1, lambda1a = 1, lambda1b = 0.1, lambda1g = 2, lambda2a = 1, lambda2b = 1, penalty = "Network", penaltyParameterList = list(laplacianMatrix = simuData$Info$laplacianMatrix) )




# 2. 自定义的拉普拉斯矩阵

set.seed(20231201) 
p <- ncol(simuData$MediData$M1) 
W <- matrix(0, nrow = p, ncol = p) 
W[lower.tri(W)] <- runif(p*(p-1)/2, 0, 1) 
W[upper.tri(W)] <- t(W)[upper.tri(W)] 
diag(W) <- 1 
L <- weightToLaplacian(W) 

modelNetwork <- singleModalityAdmm( X = simuData$MediData$X, Y = simuData$MediData$Y, M1 = simuData$MediData$M1, rho = 1, lambda1a = 1, lambda1b = 0.1, lambda1g = 2, lambda2a = 1, lambda2b = 1, penalty = "Network", penaltyParameterList = list(laplacianMatrix = L) )
3. Pathway Lasso 惩罚的参数估计
simuData <- modalityMediationDataGen(seed = 20231201, generateLaplacianMatrix = TRUE)

modelPathwayLasso <- singleModalityAdmm( X = simuData$MediData$X, Y = simuData$MediData$Y, M1 = simuData$MediData$M1, rho = 1, lambda1a = 1, lambda1b = 0.1, lambda1g = 2, lambda2a = 1, lambda2b = 1, penalty = "PathwayLasso", penaltyParameterList = list(kappa = 1, nu = 2) )

如果您看到这里,有钱的打个小💴赏~,没钱的点个"赞"赏,输出不易,感谢支持!!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1487798.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

详解:npm升级到pnpm对比优化点!!

npm3之前 依赖树层级过深&#xff0c;导致依赖路径过长并且相同依赖模块会被重复安装,占用电脑磁盘空间 npm3之后 修改为扁平化处理 算法复杂存在多项目间依赖相同副本的情况导致没有明确被依赖的包也可以直接引用&#xff0c;管理复杂 pnpm node_modules改成非扁平化结构&a…

uni-grid-item在小程序和APP中for循环不生效

<uni-grid-item v-for"(item, index) in list" :key"index"></uni-grid-item> 如上图类型的代码在H5是可以正常生效的 但是在小程序和APP中不生效&#xff0c;我也没有搜索到答案&#xff0c;但是我最后一个格子是固定的&#xff0c;我发现是…

ubuntu基础操作(1)-个人笔记

搜狗输入法Linux官网-首页搜狗输入法for linux—支持全拼、简拼、模糊音、云输入、皮肤、中英混输https://pinyin.sogou.com/linux 1.关闭sudo密码&#xff1a; 终端&#xff08;ctrl alt t&#xff09;输入 sudo visudo 打开visudo 找到 %sudo ALL(ALL:ALL) ALL 这一行…

【go从入门到精通】go基本类型和运算符用法

大家好&#xff0c;这是我给大家准备的新的一期专栏&#xff0c;专门讲golang&#xff0c;从入门到精通各种框架和中间件&#xff0c;工具类库&#xff0c;希望对go有兴趣的同学可以订阅此专栏。 --------------------------------------------------------------------------…

架构设计方法(4A架构)-应用架构

1、应用架构&#xff08;AA&#xff09;&#xff1a;业务价值与产品之间的桥梁&#xff0c;是企业架构的一个子集 2、应用架构包含“应用系统模块、应用服务、应用系统集成”3个关键要素 3、收集AS-IS应用架构&#xff0c;描绘现状&#xff0c;并识别改进机会点 4、描述对新系统…

xss.haozi:0x00

0x00没有什么过滤所以怎么写都没有关系有很多解 <script>alert(1)</script>

新书速览|Photoshop+CorelDRAW商业广告设计入门到精通:视频教学版

8章实例剖析商业案例&#xff0c;帮你提升设计效率。商业实战案例&#xff0c;真正掌握设计技能&#xff01; 本书内容 《PhotoshopCorelDRAW商业广告设计入门到精通&#xff1a;视频教学版》以创作精美、类型多样的案例&#xff0c;全面地讲解Photoshop与CorelDRAW软件相结合…

什么是五更泻及治疗方法

什么是五更泻 有些人总是在黎明之前肚脐周围的腹部疼痛发作&#xff0c;肚子咕咕作响&#xff0c;马上就想大便&#xff0c;拉出来的大便不成形&#xff0c;甚至有未消化的食物&#xff0c;便后会感觉舒服很多&#xff0c;还常伴有小腹冷痛、喜温、腰酸肢冷、舌淡苔白等症状。…

李沐动手学习深度学习——4.5练习

1. 在本节的估计问题中使用λ的值进行实验。绘制训练和测试精度关于λ的函数。观察到了什么&#xff1f; 修改代码运行如图所示&#xff0c;可以发现对于lamda值的变化而言&#xff0c;对于训练loss和测试loss的影响不大。但是如果λ 太大后&#xff0c;train和test的loss会变得…

欧拉回路(Eulerian Path)

1.定义 如果图 G G G(有向图或者无向图)中所有边一次仅且一次行遍所有顶点的通路称作欧拉通路。 如果图 G G G中所有边一次仅且一次行遍所有顶点的回路称作欧拉回路。 具有欧拉回路的图成为欧拉图(简称 E E E图)。具有欧拉通路但不具有欧拉回路的图成为半欧拉图。 顶点可以经…

【Docker】Windows11操作系统下安装、使用Docker保姆级教程

【Docker】Windows11操作系统下安装、使用Docker保姆级教程 大家好 我是寸铁&#x1f44a; 总结了一篇【Docker】Windows11操作系统下安装、使用Docker保姆级教程的文章✨ 喜欢的小伙伴可以点点关注 &#x1f49d; 前言 什么是 Docker&#xff1f; Docker 是一个开源平台&…

yolov8-更换卷积模块-ContextGuidedBlock_Down

源码解读 class ContextGuidedBlock_Down(nn.Module):"""the size of feature map divided 2, (H,W,C)---->(H/2, W/2, 2C)"""def __init__(self, nIn, dilation_rate2, reduction16):"""args:nIn: the channel of input fea…

统信UOS及麒麟KYLINOS操作系统上如何切换键盘布局

原文链接&#xff1a;如何切换键盘布局 | 统信UOS | 麒麟KYLINOS Hello&#xff0c;大家好啊&#xff0c;最近有朋友在群里提到他的键盘输入“Y”会显示“Z”&#xff0c;输入“Z”会显示“Y”。这个问题听起来可能有些奇怪&#xff0c;但其实并不罕见。出现这种情况的原因&…

广东Lenovo SR588服务器维修升级硬盘内存

本案例描述了对联想SR588服务器进行硬件升级的过程&#xff0c;包括更换固态硬盘作为系统盘&#xff0c;以及增加内存容量至128GB。升级后&#xff0c;服务器性能得到显著提升&#xff0c;同时通过重新配置RAID阵列和操作系统的重新安装&#xff0c;确保了系统的稳定性和数据的…

RAC集群日常维护

RAC的启停 cd /u01/app/19.3.0/grid/bin 停止 ./crsctl stop crs 检查 ./crsctl check crs 启动&#xff0c;可以两个节点同时启动 ./crsctl start crs 检查 ./crsctl check crs ./crsctl status res -t oracle的RAC日常维命令 集群状态检查命令 cractl status res …

数字革命的浪潮:Web3如何改变一切

随着数字技术的不断发展&#xff0c;人类社会正迎来一场前所未有的数字革命浪潮。在这个浪潮中&#xff0c;Web3技术以其去中心化、安全、透明的特性&#xff0c;正在逐渐改变着我们的生活方式、商业模式以及社会结构。本文将深入探讨Web3技术如何改变一切&#xff0c;以及其所…

基于springboot实现粮食仓库管理系统项目【项目源码+论文说明】计算机毕业设计

基于springboot实现粮食仓库管理系统演示 摘要 粮食作为人类生活的重要物质来源&#xff0c;在粮食流通过程中对于粮食仓库的管理不容忽视&#xff0c;随着我国粮食生产能力的提升以粮食存储管理的不断革新&#xff0c;粮食产量的增加为粮食仓储管理带来了挑战也带来了机遇&am…

JavaScript 中的类型转换机制(详细讲解)

文章目录 一、概述二、显示转换Number()parseInt()String()Boolean() 三、隐式转换自动转换为布尔值自动转换成字符串自动转换成数值 一、概述 前面我们讲到&#xff0c;JS中有六种简单数据类型&#xff1a;undefined、null、boolean、string、number、symbol&#xff0c;以及…

【BUUCTF Misc】通关1.0

&#x1f36c; 博主介绍&#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 hacker-routing &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【应急响应】 【Java】 【VulnHub靶场复现】【面试分析】 &#x1f389;点赞➕评论➕收藏 …

网工学习 DHCP配置-接口模式

网工学习 DHCP配置-接口模式 学习DHCP总是看到&#xff0c;接口模式、全局模式、中继模式。理解起来也不困难&#xff0c;但是自己动手操作起来全是问号。跟着老师视频配置啥问题没有&#xff0c;自己组建网络环境配置就是不通&#xff0c;悲催。今天总结一下我学习接口模式的…