2023年第十四届蓝桥杯大赛软件类省赛C/C++大学A组真题

news2024/9/27 7:26:59

2023年第十四届蓝桥杯大赛软件类省赛C/C++大学A组部分真题和题解分享

文章目录

  • 蓝桥杯2023年第十四届省赛真题-平方差
    • 思路题解
  • 蓝桥杯2023年第十四届省赛真题-更小的数
    • 思路题解
  • 蓝桥杯2023年第十四届省赛真题-颜色平衡树
    • 思路题解
  • 蓝桥杯2023年第十四届省赛真题-买瓜
    • 思路题解

蓝桥杯2023年第十四届省赛真题-平方差

题目描述
给定 L, R,问 L ≤ x ≤ R 中有多少个数 x 满足存在整数 y,z 使得 x = y2 − z2。
输入格式
输入一行包含两个整数 L, R,用一个空格分隔。
输出格式
输出一行包含一个整数满足题目给定条件的 x 的数量。
样例输入
1 5
样例输出
4
提示
1 = 12 − 02 ;
3 = 22 − 12 ;
4 = 22 − 02 ;
5 = 32 − 22 。
对于 40% 的评测用例,LR ≤ 5000 ;
对于所有评测用例,1 ≤ L ≤ R ≤ 109 。

思路题解

解题思路:

  • 规律:只有当x为奇数或4的倍数时才能拆分为两个数的平方差。
    注意事项:
  • 刚开始用c++写循环的时候,有一个样例会超时,故进一步寻找规律:F(X)=x/4+(x+1)/2,该式代表不大于x的满足条件的数的个数,用F®-F(L-1)即为L-R之间(大于等于L,小于等于R)满足条件的数的个数。
#include<iostream>
using namespace std;
int F(int x) {
    return x / 4 + (x + 1) / 2;//不大于x的满足条件的数的个数
}
int main() {
    int l = 0, r = 0;
    cin >> l >> r;
    cout << F(r)-F(l-1);
    return 0;
}

蓝桥杯2023年第十四届省赛真题-更小的数

题目描述
在这里插入图片描述
输入格式
输入一行包含一个长度为 n 的字符串表示 num(仅包含数字字符 0 ∼ 9),
从左至右下标依次为 0 ∼ n − 1。
输出格式
输出一行包含一个整数表示答案。
样例输入
210102
样例输出
8
提示
一共有 8 种不同的方案:
1)所选择的子串下标为 0 ∼ 1 ,反转后的 numnew = 120102 < 210102 ;
2)所选择的子串下标为 0 ∼ 2 ,反转后的 numnew = 012102 < 210102 ;
3)所选择的子串下标为 0 ∼ 3 ,反转后的 numnew = 101202 < 210102 ;
4)所选择的子串下标为 0 ∼ 4 ,反转后的 numnew = 010122 < 210102 ;
5)所选择的子串下标为 0 ∼ 5 ,反转后的 numnew = 201012 < 210102 ;
6)所选择的子串下标为 1 ∼ 2 ,反转后的 numnew = 201102 < 210102 ;
7)所选择的子串下标为 1 ∼ 4 ,反转后的 numnew = 201012 < 210102 ;
8)所选择的子串下标为 3 ∼ 4 ,反转后的 numnew = 210012 < 210102 ;

对于 20% 的评测用例,1 ≤ n ≤ 100 ;
对于 40% 的评测用例,1 ≤ n ≤ 1000 ;
对于所有评测用例,1 ≤ n ≤ 5000 。在这里插入图片描述

思路题解

解题思路:

中心思想:s[l] > s[r]则满足条件,答案的个数+1。

详细解释:考虑s的所有子串[l,r], l即left,是子串的起始下标,r即right是子串的末尾下标,判断s[l] 和 s[r]的大小关系:

  • 若s[l] > s[r]则该子串反转后,新串<原串,满足条件,答案数+1;

  • 若s[l] = s[r]则将子串区间[l,r]缩小为[l+1,r-1],再判断s[l+1]和s[r-1]的大小关系;

  • 若s[l] < s[r]则该子串反转后,新串>原串,不满足条件。

注意事项:

  • 注意l和r的取值范围(详见代码注释)。
#include<iostream>
#include<string>
using namespace std;
string s;
int F(int l, int r) {
    while (l < r) {
        if (s[l] > s[r])return 1;//如果s[l] > s[r],反转后满足条件 新字符串<原字符串。
        else if (s[l] == s[r]) { l++;r--; }//如果s[l] == s[r],两边同时缩小区间。
        else break;//如果s[l] < s[r],不用继续考虑,反转后一定不满足条件,直接退出循环
    }
    return 0;
}
int main(){
    cin >> s;
    int n = s.length();//n是字符串长度
    int ans = 0;//记录答案
    for (int l = 0;l <= n - 2;l++) {//l即left是子串的起始下标,从0开始到n-2(子串长度至少为2,最右侧的最小子串下标为[n-2,n-1],故l最多到n-2)
        for (int r = n - 1;r > l;r--) {//r即right是子串的末尾下标,从s的最末下标n-1到l+1。
            if(F(l,r))ans++;
        }
    }
    cout << ans;
    return 0;
}

蓝桥杯2023年第十四届省赛真题-颜色平衡树

题目描述
给定一棵树,结点由 1 至 n 编号,其中结点 1 是树根。树的每个点有一个颜色 Ci。
如果一棵树中存在的每种颜色的结点个数都相同,则我们称它是一棵颜色平衡树。
求出这棵树中有多少个子树是颜色平衡树。
输入格式
输入的第一行包含一个整数 n ,表示树的结点数。
接下来 n 行,每行包含两个整数 Ci , Fi,用一个空格分隔,表示第 i 个结点的颜色和父亲结点编号。
特别地,输入数据保证 F1 为 0 ,也即 1 号点没有父亲结点。保证输入数据是一棵树。
输出格式
输出一行包含一个整数表示答案。
样例输入
6
2 0
2 1
1 2
3 3
3 4
1 4
样例输出
4
提示
编号为 1, 3, 5, 6 的 4 个结点对应的子树为颜色平衡树。
对于 30% 的评测用例,n ≤ 200,Ci ≤ 200 ;
对于 60% 的评测用例,n ≤ 5000,Ci ≤ 5000 ;
对于所有评测用例,1 ≤ n ≤ 200000,1 ≤ Ci ≤ 200000,0 ≤ Fi < i 。

思路题解

思路:

  • 要判断每个子树是否为平衡树,需要统计子树的每种颜色的节点的数量,并判断所有数量是否相等。

  • 对于一颗树的根节点,若该树的所有子树的统计结果都得到了,就可以直接将子树的统计结果累加,并加上根节点的颜色。因此可以使用dfs对树进行搜索,在后序遍历位置得到子树的统计结果并累加,就可以计算出该树的统计结果,判断所有颜色数量是否相等即可。

注意:

  • 统计结果cnt使用数组时,需要判断整颗树所有颜色的数量,而部分子树的颜色并不包含所有的颜色,每次判断的时间复杂度为O(num_c),num_c为整棵树的颜色种数,这样会超时。因此可以使用map数据结构,这样每次只需判断子树所包含的颜色。
#include<iostream>
#include<vector>
#include<cstring>
#include<map>
using namespace std;
const int N = 2e5+1;
//最终结果
int ans=0;
//将子树的计数结果cnt_nb累加到根节点的结果cnt上
void add(map<int,int>& cnt,map<int,int>& cnt_nb){
    for(auto entry:cnt_nb){
        int c=entry.first,count = entry.second;
        cnt[c] += count;
    }
}
/*
对树进行dfs搜索,树的根节点为i,并返回该子树的各节点颜色计数结果
*/
map<int,int> dfs(vector<int>* g,int* c,int i){
    int sz = g[i].size();
    map<int,int> cnt; //记录子树的每个节点的各颜色节点的数量
    /*如果为叶子节点,直接返回*/
    if(sz==0){ 
        cnt[c[i]] = 1; 
        ans++; 
        return cnt;
    }
    /*如果不是叶子节点*/
    //将根节点的颜色加入cnt
    cnt[c[i]]=1;
    //遍历根节点的所有子树,并将子树的计数结果累加到cnt中
    for(int j=0;j<sz;j++){
        int nb = g[i][j];
        map<int,int> cnt_nb = dfs(g,c,nb);
        add(cnt,cnt_nb);
    } 
    //判断该子树的各种颜色节点的数量是否相等
    int count = cnt[c[i]];
    for(auto entry:cnt){
        //存在一种颜色数量不等,直接返回
        if(entry.second != count) return cnt; 
    }
    //各颜色的数量相等,结果+1
    ans++;
    //返回计数结果
    return cnt;
}
int main()
{
    int n;
    cin>>n;
    vector<int> g[N]; 
    int c[N]; //每个节点的颜色
    for(int i=0;i<n;i++){
        int f;
        cin>>c[i]>>f;
        if(f>=1){
            g[f-1].push_back(i); //记录节点f的子节点i(节点编号从0开始)
        }
    }
    dfs(g,c,0);
    cout<<ans;
    return 0;
}

蓝桥杯2023年第十四届省赛真题-买瓜

题目描述
小蓝正在一个瓜摊上买瓜。瓜摊上共有 n 个瓜,每个瓜的重量为 Ai 。
小蓝刀功了得,他可以把任何瓜劈成完全等重的两份,不过每个瓜只能劈一刀。
小蓝希望买到的瓜的重量的和恰好为 m 。
请问小蓝至少要劈多少个瓜才能买到重量恰好为 m 的瓜。如果无论怎样小蓝都无法得到总重恰好为 m 的瓜,请输出 −1 。
输入格式
输入的第一行包含两个整数 n, m,用一个空格分隔,分别表示瓜的个数和小蓝想买到的瓜的总重量。
第二行包含 n 个整数 Ai,相邻整数之间使用一个空格分隔,分别表示每个瓜的重量。
输出格式
输出一行包含一个整数表示答案。
样例输入
3 10
1 3 13
样例输出
2
提示
对于 20% 的评测用例,∑n≤10;
对于 60% 的评测用例,∑n≤20;
对于所有评测用例,1 ≤n≤30,1≤ Ai ≤ 109 ,1 ≤ m ≤ 109

思路题解

对于每一个瓜有三种选择:
1)买整个瓜
2)买半个瓜,需要增加劈瓜次数
3)不买

则可以使用深度优先搜索解决, 对每个瓜的三种选择进行搜索, 解空间树是一颗完全三叉树, 时间复杂度为O(3^n), 肯定会超时, 故需要进行剪枝。

买半个瓜时需要将重量除2,会产生小数,故可以将重量数组都乘2,最大重量也乘2。

搜索时需要记录三个状态,当前层数pos,当前总重量sum,当前劈瓜的次数cnt,以下情况需要剪枝:
1)当前劈瓜次数大于已求得的最小次数,即cnt>ans
2)当前重量之和大于要求的重量,即sum>m

但是这样仍然会超时,还可以将重量数组降序排列,使得更快剪枝。还可以创建一个重量数组的后缀数组suf,这样在搜索时可以利用其剪枝:若当前重量加上剩余的所有瓜重量之和小于要求的重量,剪枝。

#include<iostream>
#include<algorithm>
using namespace std;
const int N = 30; 
int INF = 100;
int n,m;
int v[N]; //重量数组
long suf[N+1]; //重量数组的后缀数组
int ans = INF; //将结果初始化为INF
/*
dfs搜索,参数分别表示当前层数,当前重量之和,切瓜的次数
*/
void dfs(int pos,long sum,int cnt){
    if(sum==m){ //找到了一个结果
        ans = min(ans,cnt);
        return;
    }
    //剪枝
    if(pos>=n || cnt>=ans || sum>m || sum+suf[pos]<m) return;
    //对三种选择进行搜索
    dfs(pos+1,sum+v[pos],cnt); 
    dfs(pos+1,sum+v[pos]/2,cnt+1);
    dfs(pos+1,sum,cnt);
}
int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0),cout.tie(0);
    cin>>n>>m;
    m*=2; //总重量乘2
    for(int i=0;i<n;i++) cin>>v[i],v[i]*=2;
    sort(v,v+n,greater<int>());
    for(int i=n-1;i>=0;i--) suf[i] = suf[i+1]+v[i];
    dfs(0,0,0);
    if(ans==INF) cout<<-1;
    else cout<<ans;
    return 0;
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1486378.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

OSCP靶场--Resourced

OSCP靶场–Resourced 考点(1.rpc枚举 2.crackmapexec密码喷洒&#xff0c;hash喷洒 3.ntds.dit system提取域hash 4.基于资源的约束委派攻击rbcd) 1.nmap扫描 ## ┌──(root㉿kali)-[~/Desktop] └─# nmap -sV -sC -p- 192.168.188.175 --min-rate 2000 Starting Nmap 7.9…

ULN2003(COM的作用)

单路内部电路原理图 三极管多级放大电路&#xff0c;最大可达到500ma&#xff1b; 典型应用&#xff1a; ULN2003属于灌电流驱动方式&#xff1b;输入与输出电平反向&#xff0c;下拉4K电阻&#xff0c;为解决单片机上电IO瞬间不稳定&#xff1b; COM端 1.可悬空&#xff1a…

ASUS华硕天选5笔记本电脑FX607JV原装出厂Win11系统下载

ASUS TUF Gaming F16 FX607JV天选五原厂Windows11系统 适用型号&#xff1a; FX607JU、FX607JI、FX607JV、 FX607JIR、FX607JVR、FX607JUR 下载链接&#xff1a;https://pan.baidu.com/s/1l963wqxT0q1Idr98ACzynQ?pwd0d46 提取码&#xff1a;0d46 原厂系统自带所有驱动、…

使用DockerFile构建Tomcat镜像

1、准备镜像文件tomcat压缩包&#xff0c;jdk的压缩包 tomcat链接&#xff1a;https://pan.baidu.com/s/1Xpecb-BSGR2sdxSL7FDtBw?pwd1234 提取码&#xff1a;1234 jdk链接&#xff1a;https://pan.baidu.com/s/1mQHInn27j1I9uuuicBsyAA?pwd1234 提取码&#xff1a;1234 …

【Python】成功解决TypeError: list indices must be integers or slices, not float

【Python】成功解决TypeError: list indices must be integers or slices, not float &#x1f308; 个人主页&#xff1a;高斯小哥 &#x1f525; 高质量专栏&#xff1a;Matplotlib之旅&#xff1a;零基础精通数据可视化、Python基础【高质量合集】、PyTorch零基础入门教程&…

动态规划5,粉刷房子,买卖股票的最佳时期

粉刷房子 思路&#xff1a; 1.经验题目要求 dp[i][0] 表示&#xff1a;粉刷到 i 位置的时候&#xff0c;最后一个位置粉刷上红色&#xff0c;此时的最小花费。 dp[i][1] 表示&#xff1a;粉刷到 i 位置的时候&#xff0c;最后一个位置粉刷上蓝色&#xff0c;此时的最小花费。…

GC机制以及Golang的GC机制详解

要了解Golang的GC机制,就需要了解什么事GC,以及GC有哪几种实现方式 一.什么是GC 当一个电脑上的动态内存不再需要时&#xff0c;就应该予以释放&#xff0c;以让出内存&#xff0c;这种内存资源管理&#xff0c;称为垃圾回收&#xff08;Garbage Collection&#xff09;&#x…

java011 - Java字符串

1、API 1.1 概念 API(application programming interface)应用编程接口。 1.2 API帮助文档 1.3 API练习 注意&#xff1a;使用快捷键 ctrlalt v 可以直接生存左边的 数据类型 变量 。 完整代码&#xff1a; 2、String 2.1 概述 String类在 java.long 包下,所以使用的时…

OPENWRT本地局域网模拟域名多IP

本地配置MINIO服务时&#xff0c;会遇到域名多IP的需求。当某一个节点失效时&#xff0c;可以通过域名访问平滑过渡到其它的节点继续服务。 【MINIO搭建过程略】 搭建完毕后&#xff0c;有4个节点&#xff0c;对应的docker搭建命令&#xff1a; docker run --nethost --rest…

【详识JAVA语言】面向对象程序三大特性之一:封装

封装的概念 面向对象程序三大特性&#xff1a;封装、继承、多态。而类和对象阶段&#xff0c;主要研究的就是封装特性。何为封装呢&#xff1f;简单来说 就是套壳屏蔽细节。 比如&#xff1a;对于电脑这样一个复杂的设备&#xff0c;提供给用户的就只是&#xff1a;开关机、通…

作用域、解构、箭头函数

作用域 局部作用域 函数作用域(一直 存在) 块作用域(ES6,只有let和const有块级作用域&#xff0c;var没有) 块就是一对大括号&#xff0c;比如{ }、if(){ }、for(…){ } 使用var则失去块级作用域 //例如 for(var i1;i<3;i) {console.log(i)} console.log(i);//正确&…

[C++]C++使用yolov9结合bytetrack实现目标追踪演示

【简介】 在C中实现YOLOv9的目标检测与ByteTrack的多目标追踪是一个相对复杂的过程&#xff0c;涉及到深度学习、计算机视觉和实时数据处理等多个领域。下面我将简单介绍这两个技术&#xff0c;并概述如何在C中实现它们。 YOLOv9&#xff08;You Only Look Once&#xff0c;版…

Linux网络编程—— IO多路复用

Linux网络编程—— IO多路复用 1. I/O 多路复用&#xff08;I/O多路转接&#xff09;1.1 常见的几种I/O模型 2. select3. poll4. epoll :star: 1. I/O 多路复用&#xff08;I/O多路转接&#xff09; I/O 多路复用 使得程序能 同时监听 多个文件描述符&#xff0c;能够提高程序的…

关于数据提交上传服务端的数据类型以及项目打包上线的流程

1 请求头的类型&#xff1a; content-type&#xff1b; 01: application/json 数据以json格式请求&#xff1a;{"key":"value"} 02: application/x-www.form-urlencoded from表单的数据格式 name"zs"&age12 03 mutipart/form-data…

数据结构与算法学习【算法思想之二分法基础】

文章目录 数据结构与算法学习【算法思想之二分查找基础】本文学习目标或巩固的知识点 最基础的二分查找&#x1f7e2;通过题目可知题解结果验证 数据结构与算法学习【算法思想之二分查找基础】 本文学习目标或巩固的知识点 学习二分法类题目 巩固基础的二分法 提前说明&#…

2024.3.1 小项目

1、机械臂 #include <myhead.h> #define SER_IP "192.168.125.32" //服务器端IP #define SER_PORT 8888 //服务器端端口号#define CLI_IP "192.168.68.148" //客户端IP #define CLI_PORT 9999 /…

Linux:线程的概念

个人主页 &#xff1a; 个人主页 个人专栏 &#xff1a; 《数据结构》 《C语言》《C》《Linux》 文章目录 前言一、线程的概念线程代码的简单示例 总结 前言 本文是对于线程概念的知识总结 一、线程的概念 在课本上&#xff0c;线程是比进程更轻量级的一种指向流 或 线程是在…

数据库系统架构与DBMS功能探微:现代信息时代数据管理的关键

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua&#xff0c;在这里我会分享我的知识和经验。&#x…

自动化测试介绍、selenium用法(自动化测试框架+爬虫可用)

文章目录 一、自动化测试1、什么是自动化测试&#xff1f;2、手工测试 vs 自动化测试3、自动化测试常见误区4、自动化测试的优劣5、自动化测试分层6、什么项目适合自动化测试 二、Selenuim1、小例子2、用法3、页面操作获取输入内容模拟点击清空文本元素拖拽frame切换窗口切换/标…

SpringCloud-Docker安装与详解

Docker 是一款强大的容器化平台&#xff0c;通过其轻量级的容器技术&#xff0c;使应用程序的开发、部署和管理变得更加便捷和高效。本文将深入探讨 Docker 的安装过程&#xff0c;并详细解析其基本概念、组件及常用命令&#xff0c;以帮助读者充分理解和熟练使用 Docker。企业…