Linux网络编程—— IO多路复用

news2024/11/14 17:37:26

Linux网络编程—— IO多路复用

    • 1. I/O 多路复用(I/O多路转接)
      • 1.1 常见的几种I/O模型
    • 2. select
    • 3. poll
    • 4. epoll :star:

1. I/O 多路复用(I/O多路转接)

   I/O 多路复用 使得程序能 同时监听 多个文件描述符,能够提高程序的性能,Linux 下实现 I/O 多路复用系统调用主要有 selectpollepoll

传统 I/O 输入/输出 是相对于 内存 而言的:

  • 输入:文件 --> 内存
  • 输出:内存 --> 文件

socket通信 中,每个 socket文件描述符fd 对应于内核中的一块缓冲区读缓冲区+写缓冲区)。这里的I/O则是对 缓冲区 的操作。

1.1 常见的几种I/O模型

(1)阻塞等待
在这里插入图片描述

  • BIO 模型 (Block IO)
    在这里插入图片描述

(2)非阻塞,忙轮询

在这里插入图片描述

  • NIO 模型 (No-Block IO)
    在这里插入图片描述

(3)IO多路转接技术

  • 第一种:select / poll
    在这里插入图片描述
  • 第二种:epoll
    在这里插入图片描述

2. select

主旨思想

  1. 首先要构造一个关于 文件描述符的 列表,将要 监听的 文件描述符 添加 到该列表中。
  2. 调用一个 系统函数监听 该列表中的文件描述符,直到这些描述符中的一个或者多个进行 I/O操作 时,该函数才返回。
    a. 这个函数是 阻塞
    b. 函数对文件描述符的检测的操作内核 完成的
  3. 在返回时,它会告诉进程有 多少(哪些)描述符 要进行 I/O操作
// sizeof(fd_set) = 128(字节) 	(1024位 标志位)
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <sys/select.h>

// 只需一次调用
int select(int nfds, fd_set *readfds, fd_set *writefds, fd_set *exceptfds, struct timeval *timeout);
	- 参数:
		- nfds : 委托内核检测的最大文件描述符的值 + 1
		- readfds : 要检测的文件描述符的读的集合,委托内核检测哪些文件描述符的读的属性
					- 一般检测读操作
					- 对应的是对方发送过来的数据,因为读是被动的接收数据,检测的就是读缓冲区
					- 是一个传入传出参数
		- writefds : 要检测的文件描述符的写的集合,委托内核检测哪些文件描述符的写的属性
					- 委托内核检测写缓冲区是不是还可以写数据(不满的就可以写)
		- exceptfds : 检测发生异常的文件描述符的集合(一般不会用到)
		- timeout : 设置的超时时间
			struct timeval {
				long tv_sec; /* seconds */
				long tv_usec; /* microseconds */
			};
			- NULL : 永久阻塞,直到检测到了文件描述符有变化
			- tv_sec = 0 tv_usec = 0, 不阻塞
			- tv_sec > 0 tv_usec > 0, 阻塞对应的时间
	- 返回值 :
		- -1 : 失败
		- >0 (n) : 检测的集合中有n个文件描述符发生了变化

// 将参数文件描述符fd 对应的标志位 设置为0
void FD_CLR(int fd, fd_set *set);

// 判断fd对应的标志位是0还是1, 返回值 : fd对应的标志位的值,0,返回0, 1,返回1
int FD_ISSET(int fd, fd_set *set);

// 将参数文件描述符fd 对应的标志位,设置为1
void FD_SET(int fd, fd_set *set);

// fd_set一共有1024 bit, 全部初始化为0
void FD_ZERO(fd_set *set);

select() 工作过程分析
在这里插入图片描述

  • 编写服务端程序 select.c
#include <stdio.h>
#include <arpa/inet.h>
#include <unistd.h>
#include <stdlib.h>
#include <string.h>
#include <sys/select.h>

int main() {

    // 1. 创建socket
    int lfd = socket(PF_INET, SOCK_STREAM, 0);
    struct sockaddr_in saddr;
    saddr.sin_port = htons(9999);
    saddr.sin_family = AF_INET;
    saddr.sin_addr.s_addr = INADDR_ANY;

    // 2. 绑定
    bind(lfd, (struct sockaddr *)&saddr, sizeof(saddr));

    // 3. 监听
    listen(lfd, 8);

    // 创建一个fd_set的集合,存放的是需要检测的文件描述符
    fd_set rdset, tmp;
    FD_ZERO(&rdset);
    FD_SET(lfd, &rdset);
    int maxfd = lfd;

    while(1) {

        tmp = rdset;

        // 调用select系统函数,让内核帮检测哪些文件描述符有数据
        int ret = select(maxfd + 1, &tmp, NULL, NULL, NULL);
        if(ret == -1) {
            perror("select");
            exit(-1);
        } else if(ret == 0) {
            continue;
        } else if(ret > 0) {
            // 说明检测到了有文件描述符的对应的缓冲区的数据发生了改变
            
            if(FD_ISSET(lfd, &tmp)) {
                // 表示有新的客户端连接进来了
                struct sockaddr_in cliaddr;
                int len = sizeof(cliaddr);
                int cfd = accept(lfd, (struct sockaddr *)&cliaddr, &len);

                // 将新的文件描述符加入到集合中
                FD_SET(cfd, &rdset);

                // 更新最大的文件描述符
                maxfd = maxfd > cfd ? maxfd : cfd;
            }

            for(int i = lfd + 1; i <= maxfd; i++) {
                if(FD_ISSET(i, &tmp)) {
                    // 说明这个文件描述符对应的客户端发来了数据
                    char buf[1024] = {0};
                    int len = read(i, buf, sizeof(buf));
                    if(len == -1) {
                        perror("read");
                        exit(-1);
                    } else if(len == 0) {
                        printf("client closed...\n");
                        close(i);
                        FD_CLR(i, &rdset);
                    } else if(len > 0) {
                        printf("read buf = %s\n", buf);
                        write(i, buf, strlen(buf) + 1);
                    }
                }
            }

        }

    }
    close(lfd);
    return 0;
}
  • 客户端 client.c
#include <stdio.h>
#include <arpa/inet.h>
#include <stdlib.h>
#include <unistd.h>
#include <string.h>

int main() {

    // 创建socket
    int fd = socket(PF_INET, SOCK_STREAM, 0);
    if(fd == -1) {
        perror("socket");
        return -1;
    }

    struct sockaddr_in seraddr;
    inet_pton(AF_INET, "127.0.0.1", &seraddr.sin_addr.s_addr);
    seraddr.sin_family = AF_INET;
    seraddr.sin_port = htons(9999);

    // 连接服务器
    int ret = connect(fd, (struct sockaddr *)&seraddr, sizeof(seraddr));

    if(ret == -1){
        perror("connect");
        return -1;
    }

    int num = 0;
    while(1) {
        char sendBuf[1024] = {0};
        sprintf(sendBuf, "send data %d", num++); // 格式化
        write(fd, sendBuf, strlen(sendBuf) + 1);

        // 接收
        int len = read(fd, sendBuf, sizeof(sendBuf));
        if(len == -1) {
            perror("read");
            return -1;
        }else if(len > 0) {
            printf("read buf = %s\n", sendBuf);
        } else {
            printf("服务器已经断开连接...\n");
            break;
        }
        sleep(1);
        // usleep(1000);
    }

    close(fd);

    return 0;
}
  • 运行结果:在这里插入图片描述
    • 不使用多进程或多线程,实现了多客户端的连接。

select() 多路复用
在这里插入图片描述

select() 的缺点
在这里插入图片描述

3. poll

#include <poll.h>

struct pollfd {
	int fd; /* 委托内核检测的文件描述符 */
	short events; /* 委托内核检测文件描述符的什么事件 */
	short revents; /* 文件描述符实际发生的事件 */
};

struct pollfd myfd;
myfd.fd = 5;
myfd.events = POLLIN | POLLOUT;

int poll(struct pollfd *fds, nfds_t nfds, int timeout);
	- 参数:
		- fds : 是一个struct pollfd 结构体数组,这是一个需要检测的文件描述符的集合
		- nfds : 这个是第一个参数数组中最后一个有效元素的下标 + 1
		- timeout : 阻塞时长
				0 : 不阻塞
				-1 : 阻塞,当检测到需要检测的文件描述符有变化,解除阻塞
				>0 : 阻塞的时长
	- 返回值:
		-1 : 失败
		>0(n) : 成功,n表示检测到集合中有n个文件描述符发生变化

在这里插入图片描述

4. epoll ⭐️

面试90%会问!

#include <sys/epoll.h>

// 创建一个新的epoll实例。在内核中创建了一个数据,这个数据中有两个比较重要的数据,一个是需要检
// 测的文件描述符的信息(红黑树),还有一个是就绪列表,存放检测到数据发送改变的文件描述符信息(双向链表)。
int epoll_create(int size);
	- 参数:
		size : 目前没有意义了。随便写一个数,必须大于0
	- 返回值:
		-1 : 失败
		> 0 : 文件描述符,操作epoll实例的

typedef union epoll_data {
	void 		*ptr;
	int 		fd;
	uint32_t 	u32;
	uint64_t 	u64;
} epoll_data_t;

struct epoll_event {
	uint32_t events; 		/* Epoll events */
	epoll_data_t data; 		/* User data variable */
};

常见的Epoll检测事件:
	- EPOLLIN
	- EPOLLOUT
	- EPOLLERR

// 对epoll实例进行管理:添加文件描述符信息,删除信息,修改信息
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
	- 参数:
		- epfd : epoll实例对应的文件描述符
		- op : 要进行什么操作
				EPOLL_CTL_ADD: 添加
				EPOLL_CTL_MOD: 修改
				EPOLL_CTL_DEL: 删除
		- fd : 要检测的文件描述符
		- event : 检测文件描述符什么事情

// 检测函数
int epoll_wait(int epfd, struct epoll_event *events, int maxevents, int
timeout);
	- 参数:
		- epfd : epoll实例对应的文件描述符
		- events : 传出参数,保存了发送了变化的文件描述符的信息
		- maxevents : 第二个参数结构体数组的大小
		- timeout : 阻塞时间
			- 0 : 不阻塞
			- -1 : 阻塞,直到检测到fd数据发生变化,解除阻塞
			- > 0 : 阻塞的时长(毫秒)
	- 返回值:
		- 成功,返回发送变化的文件描述符的个数 > 0
		- 失败 -1

epoll() 多路复用
在这里插入图片描述

Epoll工作模式

  • LT 模式水平触发
    假设委托 内核 检测读事件 -> 检测 fd读缓冲区
    • 读缓冲区有数据 - > epoll 检测到了会给用户通知
      a. 用户不读数据,数据一直在缓冲区,epoll一直通知
      b. 用户只读了一部分数据,epoll 会通知
      c. 缓冲区的数据读完了,不通知

    LTlevel - triggered)是 缺省的工作方式,并且同时支持 blockno-block socket。在这种做法中,内核 告诉你一个文件描述符 是否就绪 了,然后你可以对这个 就绪的 fd 进行 IO 操作。如果你不作任何操作,内核还是会继续通知你的。

  • ET 模式边沿触发
    假设委托 内核 检测读事件 -> 检测 fd读缓冲区
    • 读缓冲区有数据 - > epoll 检测到了会给用户通知
      a. 用户不读数据,数据一致在缓冲区中,epoll 下次检测的时候就不通知
      b. 用户只读了一部分数据,epoll 不通知
      c. 缓冲区的数据读完了,不通知

    ETedge - triggered)是 高速工作方式,只支持 no-block socket。在这种模式下,当描述符从 未就绪 变为 就绪 时,内核通过 epoll 告诉你。

  • 然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知,直到你 做了某些操作 导致 那个文件描述符 不再为就绪状态 了。
  • 但是请注意,如果一直不对这个 fd 作 IO 操作(从而导致它再次变成未就绪),内核不会发送更多的通知only once)。

     ET 模式在很大程度上减少了 epoll 事件被重复触发的次数,因此 效率要比 LT 模式高epoll 工作在 ET 模式的时候,必须使用非阻塞套接口,以 避免 由于一个文件句柄的 阻塞读 / 阻塞写 操作把处理多个文件描述符的任务 饿死

struct epoll_event {
	uint32_t 	events; 		/* Epoll events */
	epoll_data_t data; 			/* User data variable */
};

常见的Epoll检测事件:
	- EPOLLIN
	- EPOLLOUT
	- EPOLLERR
	- EPOLLET

注:仅供学习参考,如有不足,欢迎指正!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1486358.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

关于数据提交上传服务端的数据类型以及项目打包上线的流程

1 请求头的类型&#xff1a; content-type&#xff1b; 01: application/json 数据以json格式请求&#xff1a;{"key":"value"} 02: application/x-www.form-urlencoded from表单的数据格式 name"zs"&age12 03 mutipart/form-data…

数据结构与算法学习【算法思想之二分法基础】

文章目录 数据结构与算法学习【算法思想之二分查找基础】本文学习目标或巩固的知识点 最基础的二分查找&#x1f7e2;通过题目可知题解结果验证 数据结构与算法学习【算法思想之二分查找基础】 本文学习目标或巩固的知识点 学习二分法类题目 巩固基础的二分法 提前说明&#…

2024.3.1 小项目

1、机械臂 #include <myhead.h> #define SER_IP "192.168.125.32" //服务器端IP #define SER_PORT 8888 //服务器端端口号#define CLI_IP "192.168.68.148" //客户端IP #define CLI_PORT 9999 /…

Linux:线程的概念

个人主页 &#xff1a; 个人主页 个人专栏 &#xff1a; 《数据结构》 《C语言》《C》《Linux》 文章目录 前言一、线程的概念线程代码的简单示例 总结 前言 本文是对于线程概念的知识总结 一、线程的概念 在课本上&#xff0c;线程是比进程更轻量级的一种指向流 或 线程是在…

数据库系统架构与DBMS功能探微:现代信息时代数据管理的关键

✨✨ 欢迎大家来访Srlua的博文&#xff08;づ&#xffe3;3&#xffe3;&#xff09;づ╭❤&#xff5e;✨✨ &#x1f31f;&#x1f31f; 欢迎各位亲爱的读者&#xff0c;感谢你们抽出宝贵的时间来阅读我的文章。 我是Srlua&#xff0c;在这里我会分享我的知识和经验。&#x…

自动化测试介绍、selenium用法(自动化测试框架+爬虫可用)

文章目录 一、自动化测试1、什么是自动化测试&#xff1f;2、手工测试 vs 自动化测试3、自动化测试常见误区4、自动化测试的优劣5、自动化测试分层6、什么项目适合自动化测试 二、Selenuim1、小例子2、用法3、页面操作获取输入内容模拟点击清空文本元素拖拽frame切换窗口切换/标…

SpringCloud-Docker安装与详解

Docker 是一款强大的容器化平台&#xff0c;通过其轻量级的容器技术&#xff0c;使应用程序的开发、部署和管理变得更加便捷和高效。本文将深入探讨 Docker 的安装过程&#xff0c;并详细解析其基本概念、组件及常用命令&#xff0c;以帮助读者充分理解和熟练使用 Docker。企业…

基于springboot+vue的工厂车间管理系统

博主主页&#xff1a;猫头鹰源码 博主简介&#xff1a;Java领域优质创作者、CSDN博客专家、阿里云专家博主、公司架构师、全网粉丝5万、专注Java技术领域和毕业设计项目实战&#xff0c;欢迎高校老师\讲师\同行交流合作 ​主要内容&#xff1a;毕业设计(Javaweb项目|小程序|Pyt…

Spring Boot与Netty打造TCP服务端(解决粘包问题)

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 Spring Boot与Netty打造TCP服务端 前言功能目标项目实现maven坐标构建自定义HandlerChannelInitializer实现server实现 前言 在物联网时代&#xff0c;设备之间的通信变得愈发重要。本文将带你踏上一…

微信小程序云开发教程——墨刀原型工具入门(添加批注+其他操作)

引言 作为一个小白&#xff0c;小北要怎么在短时间内快速学会微信小程序原型设计&#xff1f; “时间紧&#xff0c;任务重”&#xff0c;这意味着学习时必须把握微信小程序原型设计中的重点、难点&#xff0c;而非面面俱到。 要在短时间内理解、掌握一个工具的使用&#xf…

程序员的金三银四求职宝典:如何在关键时期脱颖而出

程序员的金三银四求职宝典&#xff1a;如何在关键时期脱颖而出 程序员的金三银四求职宝典&#xff1a;如何在关键时期脱颖而出摘要 面试技巧分享 &#x1f60a;1. 自我介绍 Tips简洁明了 ✨重点突出 &#x1f50d;结合实例 &#x1f310; 2. 技术问题回答 Tips冷静应对 &#x…

重学SpringBoot3-自动配置机制

重学SpringBoot3-自动配置机制 引言Spring Boot 自动配置原理示例&#xff1a;Spring Boot Web 自动配置深入理解总结相关阅读 引言 Spring Boot 的自动配置是其最强大的特性之一&#xff0c;它允许开发者通过最少的配置实现应用程序的快速开发和部署。这一切都得益于 Spring …

扑克牌翻牌记忆小游戏源码

源码由HTMLCSSJS组成&#xff0c;双击html文件可以本地运行效果&#xff0c;也可以上传到服务器里面 效果预览 下载地址 https://www.qqmu.com/2296.html

LeetCode每日一题之 移动0

前言&#xff1a; 我的每日一题专栏正式开始更新&#xff0c;我会分享关于我在LeetCode上刷题时的经验&#xff0c;将经典题型拿出来详细讲解&#xff0c;来提升自己及大家的算法能力&#xff0c;希望这篇博客对大家有帮助。 题目介绍&#xff1a; 题目链接&#xff1a;. - …

HTML5+CSS3+移动web——列表、表格、表单

系列文章 HTML5CSS3移动web——HTML 基础-CSDN博客https://blog.csdn.net/ymxk2876721452/article/details/136070953?spm1001.2014.3001.5501 目录 一、列表 无序列表 有序列表 定义列表 二、表格 表格结构标签 基本使用 合并单元格 三、表单 input 标签 input 标签占位文…

模版进阶C++

非类型模版 之前我们写的模版都是在不知道模版&#xff08;类&#xff09;中有的变量的类型是什么的时候&#xff0c;我们先用模版参数定义&#xff0c;当类实例化的时候在传参确认 非类型模版&#xff1a;模版参数定义的时候也可以定义整型类型&#xff08;c20之后才支持其…

Topaz DeNoise AI:一键让照片重获清晰 mac/win版

Topaz DeNoise AI是一款革命性的图片降噪软件&#xff0c;它利用先进的人工智能算法&#xff0c;帮助用户轻松去除照片中的噪点&#xff0c;恢复图像的清晰度和细节。无论是专业摄影师还是摄影爱好者&#xff0c;Topaz DeNoise AI都能成为他们处理图片时的得力助手。 Topaz De…

【Matlab】Matlab电话拨号音合成与识别(代码+论文)【独一无二】

&#x1f449;博__主&#x1f448;&#xff1a;米码收割机 &#x1f449;技__能&#x1f448;&#xff1a;C/Python语言 &#x1f449;公众号&#x1f448;&#xff1a;测试开发自动化【获取源码商业合作】 &#x1f449;荣__誉&#x1f448;&#xff1a;阿里云博客专家博主、5…

springboot240基于Spring boot的名城小区物业管理系统

基于Spring boot的名城小区物业管理系统的设计与实现 摘要 当下&#xff0c;正处于信息化的时代&#xff0c;许多行业顺应时代的变化&#xff0c;结合使用计算机技术向数字化、信息化建设迈进。以前相关行业对于物业信息的管理和控制&#xff0c;采用人工登记的方式保存相关数…

第三百八十回

文章目录 1. 概念介绍2. 使用方法3. 代码与效果3.1 示例代码3.2 运行效果 4. 内容总结 013pickers2.gif 我们在上一章回中介绍了"如何实现Numberpicker"相关的内容&#xff0c;本章回中将介绍wheelChoose组件.闲话休提&#xff0c;让我们一起Talk Flutter吧。 1. 概念…