【C++】vector的使用和模拟实现(超级详解!!!!)

news2024/11/16 0:53:24

文章目录

  • 前言
  • 1.vector的介绍及使用
    • 1.1 vector的介绍
    • 1.2 vector的使用
      • 1.2.1 vector的定义
      • 1.2.2 vector iterator 的使用
      • 1.2.3 vector 空间增长问题
      • 1.2.3 vector 增删查改
      • 1.2.4 vector 迭代器失效问题。(重点!!!!!!)
      • 1.2.5 vector 在OJ中有关的练习题
  • 2.vector深度剖析及模拟实现
    • 2.1 std::vector的核心框架接口的模拟实现dzj::vector
  • 本文章内容后续会完善一些!!!
  • 总结


前言

提示:这里可以添加本文要记录的大概内容:

C++中的vector是一个强大而灵活的动态数组容器,它提供了在运行时动态增长和收缩的能力,极大地简化了数组的管理。vector是标准模板库(STL)中的一部分,为程序员提供了高效的数据存储和操作方式。在本博客中,我们将深入介绍vector的基本用法,并进行深度剖析和模拟实现,以帮助你更好地理解和利用这一重要的C++容器。


提示:以下是本篇文章正文内容,下面案例可供参考

1.vector的介绍及使用

1.1 vector的介绍

vector文档介绍

vector是一个动态数组容器,它以模板类的形式实现,能够存储同一类型的元素。其最显著的特点之一是能够在运行时动态调整数组大小,而不需要手动管理内存。通过push_back()进行元素的追加、pop_back()进行末尾元素的删除,以及使用迭代器进行元素的遍历,vector提供了简单而强大的操作方式。
vector的内部实现采用动态数组,这意味着它能够在需要时自动分配更多的内存空间,以适应元素的增加。这种机制确保了vector的高效性,使得它适用于各种规模和类型的数据集。

参考文献:
Josuttis, N. M. (2007). The C++ Standard Library: A Tutorial and Reference (2nd Edition). Addison-Wesley.
Stroustrup, B. (2013). The C++ Programming Language (4th Edition). Addison-Wesley.
Meyers, S. (2001). Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template Library. Addison-Wesley.

1.2 vector的使用

vector学习时一定要学会查看文档:vector文档介绍,vector在实际中非常的重要,在实际中我们熟悉常见的接口就可以,下面列出了哪些接口是要重点掌握的。

1.2.1 vector的定义

在这里插入图片描述

#define _CRT_SECURE_NO_WARNINGS 1

#include <iostream>
#include <vector>
using namespace std;
int main()
{
	vector<int> v1;//无参构造
	v1.push_back(0);
	v1.push_back(1);
	v1.push_back(2);
	v1.push_back(3);
	v1.push_back(4);
	v1.push_back(5);
	v1.push_back(6);
	for (int i = 0; i < v1.size(); i++)
	{
		cout << v1[i] << " ";
	}
	cout << endl;


	vector<int> v2(v1);
	v2.push_back(8);
	v2.push_back(8);
	v2.push_back(8);
	for (int i = 0; i < v2.size(); i++)
	{
		cout << v2[i] << " ";
	}
	cout << endl;
	return 0;
}

1.2.2 vector iterator 的使用

在这里插入图片描述
图解:
在这里插入图片描述

#include <iostream>
#include <vector>
using namespace std;
void Print1(const vector<int>&v)//正向遍历
{
	vector<int>::const_iterator it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		it++;
	}
	cout << endl;
}
void Print2(const vector<int>& v)//反向遍历
{
	vector<int>::const_reverse_iterator it = v.rbegin();
	while (it != v.rend())
	{
		cout << *it << " ";
		it++;
	}
	cout << endl;
}
int main()
{
	vector<int> v1;
	v1.push_back(1);
	v1.push_back(2);
	v1.push_back(3);
	v1.push_back(4);
	v1.push_back(5);
	v1.push_back(6);
	Print1(v1);
	Print2(v1);
	// 使用迭代器进行修改
	vector<int>::iterator it = v1.begin();
	while (it != v1.end())
	{
		*it *= 2;
		it++;
	}
	Print1(v1);
	Print2(v1);
	return 0;
}

1.2.3 vector 空间增长问题

在这里插入图片描述

  1. capacity的代码在vs和g++下分别运行会发现,vs下capacity是按1.5倍增长的,g++是按2倍增长的。
    这个问题经常会考察,不要固化的认为,顺序表增容都是2倍,具体增长多少是根据具体的需求定义
    的。vs是PJ版本STL,g++是SGI版本STL。

  2. reserve只负责开辟空间,如果确定知道需要用多少空间,reserve可以缓解vector增容的代价缺陷问题。

  3. resize在开空间的同时还会进行初始化,影响size。


// vector::capacity
#include <iostream>
#include <vector>
using namespace std;
int main()
{
	vector<int> v;
	cout << "making v growing!!!!" << endl;
	cout << "capacity changed:" << v.capacity() << endl;
	for (int i = 0; i < 100; i++)
	{
		v.push_back(i);
		if (v.size() == v.capacity())
			cout << "capacity changed:" << v.capacity() << endl;
	}
	
	
	return 0;
}

运行结果:
在这里插入图片描述

// vector::reserve
#include <iostream>
#include <vector>
using namespace std;
int main()
{
	vector<int> v;
	for (int i = 0; i < 100; i++)
	{
		v.push_back(i);
	}
	cout << "size:" << v.size()<<endl;
	cout << "capacity:" << v.capacity()<<endl;

	v.reserve(200);
	cout << "size:" << v.size() << endl;
	cout << "capacity:" << v.capacity() << endl;
	return 0;
}

运行结果:
在这里插入图片描述

// vector::resize
#include <iostream>
#include <vector>
using namespace std;
int main()
{
	vector<int> v;
	//for (int i = 0; i < 100; i++)
	//{
	//	v.push_back(i);
	//}
	cout << "size:" << v.size()<<endl;
	cout << "capacity:" << v.capacity()<<endl;

	v.resize(200);
	cout << "size:" << v.size() << endl;
	cout << "capacity:" << v.capacity() << endl;

	v.resize(100);
	cout << "size:" << v.size() << endl;
	cout << "capacity:" << v.capacity() << endl;

	v.resize(101,8);
	cout << "size:" << v.size() << endl;
	cout << "capacity:" << v.capacity() << endl;

	for (auto e : v)
	{
		cout << e << " ";
	}
	return 0;
}

运行结果:
在这里插入图片描述

1.2.3 vector 增删查改

在这里插入图片描述

// push_back/pop_back
#include <iostream>
#include <vector>
using namespace std;
int main()
{
	int arr[] = { 1,2,3,4 };
	vector<int> v(arr, arr + sizeof(arr) / sizeof(arr[0]));
	v.push_back(5);
	v.push_back(6);
	vector<int>::iterator it = v.begin();
	while (it != v.end())
	{
		cout << *it<<" ";
		it++;
	}
	cout << endl;
	v.pop_back();
	v.pop_back();
	it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		it++;
	}
	return 0;
}
// push_back/pop_back

运行结果:
在这里插入图片描述

// find / insert / erase
#include <iostream>
#include <vector>
using namespace std;
int main()
{
	vector<int> v;
	v.push_back(1);
	v.push_back(2);
	v.push_back(3);
	v.push_back(4);
	vector<int>::iterator pos = find(v.begin(), v.end(), 3);
	v.insert(pos, 0);
	for (auto e : v)
	{
		cout << e << " ";
	}
	cout << endl;
	pos = find(v.begin(), v.end(), 3);
	v.erase(pos);
	for (auto e : v)
	{
		cout << e << " ";
	}
	return 0;
}

运行结果:
在这里插入图片描述

// operator[]+index 和 C++11中vector的新式for+auto的遍历
// vector使用这两种遍历方式是比较便捷的。
#include <iostream>
#include <vector>
using namespace std;
int main()
{
	vector<int> v = { 1,2,3,4 };
	//operator[]+index
	for (int i = 0; i < v.size(); i++)
	{
		cout << v[i]<<" ";
	}
	cout << endl;
	for (int i = 0; i < v.size(); i++)
	{
		v[i] *= 2;
	}
	vector<int> swapv;
	swapv.swap(v);
	for (auto e : swapv)
	{
		cout << e << " ";
	}

	return 0;
}

运行结果:
在这里插入图片描述

1.2.4 vector 迭代器失效问题。(重点!!!)

迭代器的主要作用就是让算法能够不用关心底层数据结构,其底层实际就是一个指针,或者是对指针进行了所谓的封装,比如:vector的迭代器就是原生态指针T*。因此迭代器失效,实际就是迭代器底层对应指针所指向的空间被销毁了,而使用一块已经被释放的空间,造成的后果是程序崩溃(即如果继续使用已经失效的迭代器,程序可能会崩溃)。

对于vector可能会导致其迭代器失效的操作有

  1. 会引起其底层空间改变的操作,都有可能是迭代器失效,比如:resize、reserve、insert、assign、
    push_back等。
#include <iostream>
#include <vector>
using namespace std;
int main()
{
	vector<int> v = { 1,2,3,4 };
	auto it = v.begin();
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}

	v.reserve(100);
	while (it != v.end())
	{
		cout << *it << " ";
		++it;
	}
	return 0;
}

运行错误:
在这里插入图片描述
出错原因:以上操作,都有可能会导致vector扩容,也就是说vector底层原理旧空间被释放掉,而在打印时,it还使用的是释放之间的旧空间,在对it迭代器操作时,实际操作的是一块已经被释放的空间,而引起代码运行时崩溃。
解决方式:在以上操作完成之后,如果想要继续通过迭代器操作vector中的元素,只需给it重新赋值即可。

2. 指定位置元素的删除操作–erase

#include <iostream>
using namespace std;
#include <vector>
int main()
{
	int a[] = { 1, 2, 3, 4 };
	vector<int> v(a, a + sizeof(a) / sizeof(int));
	// 使用find查找3所在位置的iterator
	vector<int>::iterator pos = find(v.begin(), v.end(), 3);
	// 删除pos位置的数据,导致pos迭代器失效。
	v.erase(pos);
	cout << *pos << endl; // 此处会导致非法访问
	return 0;
}


erase删除pos位置元素后,pos位置之后的元素会往前搬移,没有导致底层空间的改变,理论上讲迭代器不应该会失效,但是:如果pos刚好是最后一个元素,删完之后pos刚好是end的位置,而end位置是没有元素的,那么pos就失效了。因此删除vector中任意位置上元素时,vs就认为该位置迭代器失效了。

迭代器失效解决办法:在使用前,对迭代器重新赋值即可

1.2.5 vector 在OJ中有关的练习题

  1. 只出现一次的数字i
  2. 杨辉三角OJ
  3. 删除排序数组中的重复项 OJ
  4. 只出现一次的数ii OJ
  5. 只出现一次的数iii OJ
  6. 数组中出现次数超过一半的数字 OJ
  7. 电话号码字母组合OJ
  8. 连续子数组的最大和 OJ

2.vector深度剖析及模拟实现

在这里插入图片描述

2.1 std::vector的核心框架接口的模拟实现dzj::vector

模拟实现代码

本文章内容后续会完善一些!!!

总结

通过本文的阅读,我们详细了解了C++中vector的基本概念、使用方法和一些关键特性。从动态数组的角度深度剖析了vector的内部机制,以及通过模拟实现进一步加深了对其工作原理的理解。vector的灵活性和高效性使其成为C++编程中不可或缺的工具,无论是在简单的数组操作还是复杂的数据结构中,都能展现其强大的应用价值。通过学习和研究vector,我们能够更好地优化代码、提高程序的效率,为C++编程带来更多便利。希望本文对你在使用和理解C++中的vector时有所帮助。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1486058.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

蓝桥杯倒计时 41天 - KMP 算法

KMP算法 KMP算法是一种字符串匹配算法&#xff0c;用于匹配模式串P在文本串S中出现的所有位置。 例如S“ababac&#xff0c;P“aba”&#xff0c;那么出现的所有位置是13。 在初学KMP时&#xff0c;我们只需要记住和学会使用模板即可&#xff0c;对其原理只需简单理解&#xff…

WiFi模块引领智能家居革命:连接未来的生活

随着科技的快速发展&#xff0c;智能家居正成为现代生活的一部分&#xff0c;极大地改变了我们与家庭环境互动的方式。其中&#xff0c;WiFi模块作为关键的连接技术&#xff0c;在推动智能家居革命中发挥着不可忽视的作用。本文将深入探讨WiFi模块如何驱动智能家居革命。 设备互…

Maven实战(2)之搭建maven私服

一, 背景: 如果使用国外镜像,下载速度比较慢; 如果使用阿里云镜像,速度还算OK,但是假如网速不好的时候,其实也是比较慢的; 如果没有网的情况下更加下载不了. 二, 本地仓库、个人/公司私服、远程仓库关系如下: 三, 下载安装nexus私服 略

如何在Window系统部署VisualSVN服务并结合cpolar实现无公网ip远程访问

文章目录 前言1. VisualSVN安装与配置2. VisualSVN Server管理界面配置3. 安装cpolar内网穿透3.1 注册账号3.2 下载cpolar客户端3.3 登录cpolar web ui管理界面3.4 创建公网地址 4. 固定公网地址访问 前言 SVN 是 subversion 的缩写&#xff0c;是一个开放源代码的版本控制系统…

Mixtral模型解读

Mixtral 8x7B(Mistral MoE) 1.Mistral 7B模型 Mistral 7B模型与Llama2 7B模型结构整体上是相似的&#xff0c;其结构参数如下所示。 细节上来说&#xff0c;他有两点不同。 1.1SWA(Sliding Window Attention) ​ 一般的Attention来说&#xff0c;是Q与KV-Cache做内积&#…

23端口登录的Telnet命令+传输协议FTP命令

一、23端口登录的Telnet命令 Telnet是传输控制协议/互联网协议&#xff08;TCP/IP&#xff09;网络&#xff08;如Internet&#xff09;的登录和仿真程序&#xff0c;主要用于Internet会话。基本功能是允许用户登录进入远程主机程序。 常用的Telnet命令 Telnet命令的格式为&…

基础算法(四)(递归)

1.递归算法的介绍&#xff1a; 概念&#xff1a;递归是指函数直接或间接调用自身的过程。 解释递归的两个关键要素&#xff1a; 基本情况&#xff08;递归终止条件&#xff09;&#xff1a;递归函数中的一个条件&#xff0c;当满足该条件时&#xff0c;递归终止&#xff0c;避…

C++11中的auto、基于范围的for循环、指针空值nullptr

目录 auto关键字 使用原因 历史背景 C11中的auto auto的使用案例 auto 指针/引用 同一行定义多个变量 typeid关键字 基于范围的for循环 范围for的语法 范围for的使用条件 指针空值nullptr C98中的指针空值 C11中的指针空值 auto关键字 使用原因 随着程序越…

Decoupled Knowledge Distillation解耦知识蒸馏

Decoupled Knowledge Distillation解耦知识蒸馏 现有的蒸馏方法主要是基于从中间层提取深层特征&#xff0c;而忽略了Logit蒸馏的重要性。为了给logit蒸馏研究提供一个新的视角&#xff0c;我们将经典的KD损失重新表述为两部分&#xff0c;即目标类知识蒸馏&#xff08;TCKD&a…

JavaSec 基础之五大不安全组件

文章目录 不安全组件(框架)-Shiro&FastJson&Jackson&XStream&Log4jLog4jShiroJacksonFastJsonXStream 不安全组件(框架)-Shiro&FastJson&Jackson&XStream&Log4j Log4j Apache的一个开源项目&#xff0c;是一个基于Java的日志记录框架。 历史…

python学习笔记------元组

元组的定义 定义元组使用小括号&#xff0c;且使用逗号隔开各个数据&#xff0c;数据是不同的数据类型 定义元组字面量&#xff1a;(元素,元素,元素,......,元素) 例如&#xff1a;(1,"hello") 定义元组变量&#xff1a;变量名称(元素,元素,元素,......,元素)…

哈希表是什么?

一、哈希表是什么&#xff1f; 哈希表&#xff0c;也称为散列表&#xff0c;是一种根据关键码值&#xff08;Key value&#xff09;直接进行访问的数据结构。它通过把关键码值映射到表中一个位置来访问记录&#xff0c;从而加快查找速度。这个映射函数叫做散列函数&#xff08…

C#与VisionPro联合开发——单例模式

单例模式 单例模式是一种设计模式&#xff0c;用于确保类只有一个实例&#xff0c;并提供一个全局访问点来访问该实例。单例模式通常用于需要全局访问一个共享资源或状态的情况&#xff0c;以避免多个实例引入不必要的复杂性或资源浪费。 Form1 的代码展示 using System; usi…

初阶数据结构之---栈和队列(C语言)

引言 在顺序表和链表那篇博客中提到过&#xff0c;栈和队列也属于线性表 线性表&#xff1a; 线性表&#xff08;linear list&#xff09;是n个具有相同特性的数据元素的有限序列。 线性表是一种在实际中广泛使用的数据结构。线性表在逻辑上是线性结构&#xff0c;也就是说是连…

c++之拷贝构造和赋值

如果一个构造函数中的第一个参数是类本身的引用&#xff0c;或者是其他的参数都有默认值&#xff0c;则该构造函数为拷贝构造函数。 那么什么是拷贝构造呢&#xff1f;利用同类对象构造一个新对象。 1&#xff0c;函数名和类必须同名。 2&#xff0c;没有返回值。 3&#x…

差分题练习(区间更新)

一、差分的特点和原理 对于一个数组a[]&#xff0c;差分数组diff[]的定义是: 对差分数组做前缀和可以还原为原数组: 利用差分数组可以实现快速的区间修改&#xff0c;下面是将区间[l, r]都加上x的方法: diff[l] x; diff[r 1] - x;在修改完成后&#xff0c;需要做前缀和恢复…

4.关联式容器

关联式container STL中一些常见的容器&#xff1a; 序列式容器&#xff08;Sequence Containers&#xff09;&#xff1a; vector&#xff08;动态数组&#xff09;&#xff1a; 动态数组&#xff0c;支持随机访问和在尾部快速插入/删除。list&#xff08;链表&#xff09;&am…

奇舞周刊第521期:“一切非 Rust 项目均为非法”

奇舞推荐 ■ ■ ■ 拜登&#xff1a;“一切非 Rust 项目均为非法” 科技巨头要为Coding安全负责。这并不是拜登政府对内存安全语言的首次提倡。“程序员编写代码并非没有后果&#xff0c;他们的⼯作⽅式于国家利益而言至关重要。”白宫国家网络总监办公室&#xff08;ONCD&…

Python3零基础教程之数学运算专题进阶

大家好,我是千与编程,今天已经进入我们Python3的零基础教程的第十节之数学运算专题进阶。上一次的数学运算中我们介绍了简单的基础四则运算,加减乘除运算。当涉及到数学运算的 Python 3 刷题使用时,进阶课程包含了许多重要的概念和技巧。下面是一个简单的教程,涵盖了一些常…

NOC2023软件创意编程(学而思赛道)python初中组决赛真题

目录 下载原文档打印做题: 软件创意编程 一、参赛范围 1.参赛组别:小学低年级组(1-3 年级)、小学高年级组(4-6 年级)、初中组。 2.参赛人数:1 人。 3.指导教师:1 人(可空缺)。 4.每人限参加 1 个赛项。 组别确定:以地方教育行政主管部门(教委、教育厅、教育局) 认…