用冒泡排序模拟C语言中的内置快排函数qsort!

news2025/1/11 14:49:52

目录

 ​编辑

1.回调函数的介绍

2. 回调函数实现转移表

3. 冒泡排序的实现

4. qsort的介绍和使用

5. qsort的模拟实现 

6. 完结散花


 

                                            悟已往之不谏,知来者犹可追  

创作不易,宝子们!如果这篇文章对你们有帮助的话,别忘了给个免费的赞哟~

1.回调函数的介绍

这里首先介绍一下回调函数的概念~

回调函数是使用函数指针(地址)调用的函数。

如果我们把一个函数的指针(地址)作为一个参数传递给另一个函数,当我们通过指针找到这个函数并对其进行调用时,这个被调用的函数就是回调函数。

回调函数不是由该函数的实现方直接调用,而是在特定的事件或条件发生时由另外的一方调用的,用于对该事件或条件进行响应

#include<stdio.h>
test(void (*print)())
{
	print();
}
void print()
{
	printf("这是一个回调函数\n");
}
int main()
{
	test(print);
	return 0;
}


2. 回调函数实现转移表

现在我们来实现一个简单的计算器~

#include <stdio.h>
int add(int a, int b)
{
return a + b;
}
int sub(int a, int b)
{
return a - b;
}
int mul(int a, int b)
{
return a * b;
}
int div(int a, int b)
{
return a / b;
}
int main()
{
int x, y;
int input = 1;
int ret = 0;
do
{
printf("*************************\n");
printf(" 1:add 2:sub \n");
printf(" 3:mul 4:div \n");
printf(" 0:exit \n");
printf("*************************\n");
printf("请选择:");
scanf("%d", &input);
switch (input)
{
case 1:
printf("输⼊操作数:");
scanf("%d %d", &x, &y);
ret = add(x, y);
printf("ret = %d\n", ret);
break;
case 2:
printf("输⼊操作数:");
scanf("%d %d", &x, &y);
ret = sub(x, y);
printf("ret = %d\n", ret);
break;
case 3:
printf("输⼊操作数:");
scanf("%d %d", &x, &y);
ret = mul(x, y);
printf("ret = %d\n", ret);
break;
case 4:
printf("输⼊操作数:");
scanf("%d %d", &x, &y);
ret = div(x, y);
printf("ret = %d\n", ret);
break;
case 0:
printf("退出程序\n");
break;
default:
printf("选择错误\n");
break;
}
} while (input);
return 0;
}

我们可以很容易的观察到上述代码有一部分是多次重复的~

 这部分只有函数的调用是不一样的,所以我们是不是可以把这部分封装成一个函数calc(),在calc函数中调用不同的加减乘除函数就行了呢~

#include <stdio.h>
int add(int a, int b)
{
	return a + b;
}
int sub(int a, int b)
{
	return a - b;
}
int mul(int a, int b)
{
	return a * b;
}
int div(int a, int b)
{
	return a / b;
}
void cacl(int(*p)(int x, int y))
{
	int x = 0;
	int y = 0;
	printf("输入操作数:");
	scanf("%d %d", &x, &y);
	int ret = p(x, y);
	printf("ret = %d\n", ret);
}

int main()
{
	int input = 1;
	do
	{
		printf("*************************\n");
		printf(" 1:add 2:sub \n");
		printf(" 3:mul 4:div \n");
		printf(" 0:exit \n");
		printf("*************************\n");
		printf("请选择:");
		scanf("%d", &input);
		switch (input)
		{
		case 1:
			cacl(add);
			break;
		case 2:
			cacl(sub);
			break;
		case 3:
			cacl(mul);
			break;
		case 4:
			cacl(div);
			break;
		case 0:
			printf("退出程序\n");
			break;
		default:
			printf("选择错误\n");
			break;
		}
	} while (input);
	return 0;
}

3. 冒泡排序的实现

常见的排序有插入排序、选择排序、希尔排序、冒泡排序、快速排序等等~

在讲qsort前,这里我们先了解一下冒泡排序~

顾名思义,冒泡排序就是让元素像泡泡一样慢慢往上移动~

 这里我用C语言来实现一下~

void bull_sort(int* arr,int len)
{
	assert(arr);//判断指针的有效性
	for (int i = 0; i < len - 1; i++)
	{
		int flag = 1;//假设已经有序
		for (int j = 0; j < len - 1 - i; j++)
		{
			if (arr[j] > arr[j + 1])
			{
				int tmp = arr[j];
				arr[j] = arr[j + 1];
				arr[j + 1] = tmp;
				flag = 0;
			}
		}
		if (flag == 1)
			break;
	}
}
int main()
{
	int arr[] = { 9,8,7,6,5,4,3,2,1,0 };
	int len = sizeof(arr) / sizeof(arr[0]);
	bull_sort(arr, len);
	for (int i = 0; i < len; i++)
	{
		printf("%d ", arr[i]);
	}
	return 0;
}

运行效果~

 

4. qsort的介绍和使用

接下来我们就来看看qsort啦~

注意我们在使用qsort时要引入头文件#include<stdlib.h>

这里简单的举个栗子来使用一下qsort啦~

int cmp_int(const void* a, const void* b)
{
	assert(a && b);
	return *(int*)a - *(int*)b;
}
int main()
{
	int arr[] = { 9,8,7,6,5,4,3,2,1,0 };
	int len = sizeof(arr) / sizeof(arr[0]);
	assert(arr);//判断指针的有效性
	qsort(arr, len, sizeof(arr[0]), cmp_int);
	for (int i = 0; i < len; i++)
	{
		printf("%d ", arr[i]);
	}
	return 0;;
}

效果如下~

 我们还可以使用qsort比较结构体类型的变量!

我们通过结构体中的名字来比较结构体变量的大小~

struct S
{
	char name[20];
	int age;
};//定义一个结构体类型
int cmp_stu_by_age(const void* a,const void* b)
{
	return strcmp(((struct S*)a)->name, ((struct S*)b)->name);
}
int main()
{
	struct S student[3] = { {"zhangsan",18},{"lisi",17},{"wanglaowu",16} };//定义一个结构体数组并初始化
	int len = sizeof(student) / sizeof(student[0]);
	qsort(student, len, sizeof(student[0]), cmp_stu_by_age);
	return 0;
}

排序前~

排序后~

5. qsort的模拟实现 

对比上面我们自己写的冒泡排序和C语言中的内置快排,我们会发现我们自己写的冒泡排序只能对int类型的数据进行排序(有局限性),而qsort却可以对任意类型的数据进行排序。

接下来这里我就使用冒泡排序的算法模拟实现qsort~

int cmp_int(const void* a, const void* b)
{
	assert(a && b);
	return *(int*)a - *(int*)b;
}
void swap(char* buf1,char* buf2,size_t num)//一个一个字节交换
{
	while (num--)
	{
		char tmp = *(buf1);
		*(buf1) = *(buf2);
		*(buf2) = tmp;
		buf1++;
		buf2++;
	}
}
void my_qsort(void* arr, size_t len, size_t num, int (*cmp_int)(const void*,const void*))
{
	assert(arr);//判断指针的有效性
	for (int i = 0; i < len - 1; i++)
	{
		int flag = 1;//假设已经有序
		for (int j = 0; j < len - 1 - i; j++)
		{
			if(cmp_int((char*)arr + j * num, (char*)arr + (j + 1) * num)>0);
			{
				swap(((char*)arr + j * num), ((char*)arr + (j + 1) * num),num);
				flag = 0;
			}
		}
		if (flag == 1)
			break;
	}
}
int main()
{
	int arr[] = { 9,8,7,6,5,4,3,2,1,0 };
	size_t len = sizeof(arr) / sizeof(arr[0]);
	my_qsort(arr, len, sizeof(arr[0]), cmp_int);
	for (int i = 0; i < len; i++)
	{
		printf("%d ", arr[i]);
	}
	return 0;
}

运行效果如下~

 

6. 完结散花

好了,这期的分享到这里就结束了~

如果这篇博客对你有帮助的话,可以用你们的小手指点一个免费的赞并收藏起来哟~

如果期待博主下期内容的话,可以点点关注,避免找不到我了呢~

我们下期不见不散~~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1484042.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Windows批处理:bat文件学习

目录 第一章、快速了解Windows批处理1.1&#xff09;Windows批处理相关概念介绍1.1.1&#xff09;批处理的起源1.1.2&#xff09;bat文件介绍 1.2&#xff09;Demo1.2.1&#xff09;创建文件添加命令1.2.2&#xff09;bat脚本中的命令解释 第二章、实例2.1&#xff09;点击bat文…

排序——手撕快排

本节复习快速排序&#xff0c; 快排我们要讲三个版本&#xff1a;一种是霍尔大佬的原版版本&#xff0c; 也就是快速排序的原版。 一种挖坑法。还有一种前后指针法。 首先我们应该知道&#xff0c;三个版本针对的是单趟进行排序的方法不同。 而多趟使用的是递归或者非递归模拟…

Carla自动驾驶仿真九:车辆变道路径规划

文章目录 前言一、关键函数二、完整代码效果 前言 本文介绍一种在carla中比较简单的变道路径规划方法&#xff0c;主要核心是调用carla的GlobalRoutePlanner模块和PID控制模块实现变道&#xff0c;大体的框架如下图所示。 一、关键函数 1、get_spawn_point(),该函数根据指定r…

360文件夹(窗口标签化工具)使用:windows系统的文件管理标签化

软件介绍 360 文件夹是一款单窗口多标签的资源管理器&#xff0c;提高了用户使用各类文件夹操作效率。单窗口多标签&#xff0c;像浏览器一样用多标签管理每个文件夹&#xff0c;以便更加快速高效地切换文件夹&#xff0c;告别凌乱的窗口&#xff0c;加快办公效率&#xff1b;…

剑指offer面试题28:对称的二叉树

#试题28&#xff1a;对称的二叉树 题目&#xff1a; 请设计一个函数判断一棵二叉树是否 轴对称 。 示例 1&#xff1a; 输入&#xff1a;root [6,7,7,8,9,9,8] 输出&#xff1a;true 解释&#xff1a;从图中可看出树是轴对称的。示例 2&#xff1a; 输入&#xff1a;root …

ssm个人学习01

Spring配置文件: spring环境的搭建: 1:导入对应的spring坐标 也就是依赖 2:编写controller, service, dao相关的代码 3:创建配置文件(在resource下面配置文件) 例如:applicationContext.xml <bean id "" class ""> <property name "&…

SQL窗口函数, 测试题

第一题 create table user_score (logday date, -- 考试时间 userid VARCHAR(20), -- 考试用户 score int); -- 考试成绩Insert into user_score values (2019-10-20,11111,85) ,(2019-10-20,22222,83) ,(2019-10-20,33333,86) ,(2019-10-21,11111,87) ,(2019-10-2…

node 之 http模块

1.什么是http模块 在网络节点中&#xff0c;负责消费资源的电脑叫做客户端&#xff1b;负责对外提供网络资源的电脑&#xff0c;叫做服务器 http模块是node.js官方提供的&#xff0c;用来创建web服务器的模块&#xff0c;通过http模块提供的http.createServer()方法&#xff0c…

烧脑问题解决办法:如何选择一款合适自己的手机流量卡

现在社会人们越来越离不开手机了&#xff0c;手机给我们生活带来了翻天覆地的变化&#xff0c;手机需要最多的就是流量了&#xff0c;所以选择一款合适自己的手机流量卡就显得尤为重要了&#xff0c;今天小编就给大家来分享一下我的经验&#xff0c;希望对大家能有帮助&#xf…

构建大语言模型的四个主要阶段

大规模语言模型的发展历程虽然只有短短不到五年的时间&#xff0c;但是发展速度相当惊人&#xff0c;国内外有超过百种大模型相继发布。中国人民大学赵鑫教授团队在文献按照时间线给出 2019 年至 2023 年比较有影响力并且模型参数量超过 100 亿的大规模语言模型。大规模语言模型…

关于synchronized介绍

synchronized的特性 1. 乐观锁/悲观锁自适应,开始时是乐观锁,如果锁冲突频繁,就转换为悲观锁 2.轻量级/重量级锁自适应 开始是轻量级锁实现,如果锁被持有的时间较长,就转换成重量级锁 3.自旋/挂起等待锁自适应 4.不是读写锁 5.非公平锁 6,可重入锁 synchronized的使用 1&#…

01背包(详细)

背包最大重量为4。 有物品3件&#xff0c;分别有其质量和价值。 vector<int> weight{1,3,4}; vector<int> value{15,20,30}; int bag4; 问背包能背的物品最大价值是多少&#xff1f; 这是标准的动态规划问题&#xff0c;每一个问题鱼鳍前面的子问题相联。 目…

structuredClone() 详解

您是否知道&#xff0c;现在 JavaScript 中有一种原生的方式可以深拷贝对象&#xff1f; 没错&#xff0c;这个内置于 JavaScript 运行时的structuredClone函数就是这样&#xff1a; const calendarEvent {title: "Builder.io大会",date: new Date(123),attendees…

#WEB前端(CSS基础)

1.实验&#xff1a;HTML是网页骨架&#xff0c;CCS是网页装修 2.IDE&#xff1a;VSCODE 3.记录&#xff1a; style 4.代码&#xff1a; <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><meta name"view…

Ajax(黑马学习笔记)

Ajax介绍 Ajax概述 我们前端页面中的数据&#xff0c;如下图所示的表格中的学生信息&#xff0c;应该来自于后台&#xff0c;那么我们的后台和前端是互不影响的2个程序&#xff0c;那么我们前端应该如何从后台获取数据呢&#xff1f;因为是2个程序&#xff0c;所以必须涉及到…

风电机组来说,CMS振动数据和SCADA数据各有其优点和缺点

对于风电机组来说&#xff0c;CMS振动数据和SCADA数据各有其优点和缺点。 CMS振动数据的缺点主要包括&#xff1a; 数据解读难度高&#xff1a;振动数据包含大量的专业信息&#xff0c;如振动幅度、频率、相位等&#xff0c;需要专业的知识和技能才能准确解读。受环境影响大&…

DETR详解

1. 动机 传统的目标检测任务需要大量的人工先验知识&#xff0c;例如预定义的先验anchor&#xff0c;NMS后处理策略等。这些人工先验知识引入了很多人为因素&#xff0c;且较难处理。如果能够端到端到直接生成目标检测结果&#xff0c;将会使问题变得很优雅。 2. 主要贡献 提…

2024最新算法:电鳗觅食优化算法(Electric eel foraging optimization,EEFO)求解23个基准函数(提供MATLAB代码)

一、电鳗觅食优化算法 电鳗觅食优化算法&#xff08;Electric eel foraging optimization,EEFO&#xff09;由Weiguo Zhao等人提出的一种元启发算法&#xff0c;EEFO从自然界中电鳗表现出的智能群体觅食行为中汲取灵感。该算法对四种关键的觅食行为进行数学建模&#xff1a;相…

ESP8266智能家居(5)——开发APP深入篇

1.代码解析 接下来重点介绍一下逻辑代码 这里面主要是设置mqtt服务器的IP地址和端口号&#xff0c;设置服务器的用户名和登录密码 绑定好订阅主题和发布主题&#xff08;和8266上的订阅、发布交叉就行&#xff09; 绑定界面&#xff0c;设置界面标题 绑定6个文本控件 将从mq…

【C语言】熟悉文件基础知识

欢迎关注个人主页&#xff1a;逸狼 创造不易&#xff0c;可以点点赞吗~ 如有错误&#xff0c;欢迎指出~ 文件 为了数据持久化保存&#xff0c;使用文件&#xff0c;否则数据存储在内存中&#xff0c;程序退出&#xff0c;内存回收&#xff0c;数据就会丢失。 程序设计中&…