文本多分类

news2024/11/17 10:56:51

还在用BERT做文本分类?分享一套基于预训练模型ERNIR3.0的文本多分类全流程实例【文本分类】_ernir 文本分类-CSDN博客

/usr/bin/python3 -m pip install --upgrade pip

python3-c"import platform;print(platform.architecture()[0]);print(platform.machine())"

python3 -m pip install paddlepaddle==2.5.2 -i https://mirror.baidu.com/pypi/simple  

python3 -m  pip install --upgrade paddlenlp -i https://mirror.baidu.com/pypi/simple

echo 'export PATH="/usr/local/python3/bin:$PATH"' >> ~/.bashrc

source ~/.bashrc

pip3 install --upgrade paddlenlp -i https://mirror.baidu.com/pypi/simple

echo 'export PATH="/usr/local/python3/bin:$PATH"' >> ~/.bashrc

source ~/.bashrc

pip3 install scikit-learn==1.0.2

3.2 文心ERNIE系列模型介绍

     最新开源ERNIE 3.0系列预训练模型:

  • 110M参数通用模型ERNIE 3.0 Base
  • 280M参数重量级通用模型ERNIE 3.0 XBase
  • 74M轻量级通用模型ERNIE 3.0 Medium

文档链接: https://github.com/PaddlePaddle/ERNIE
ERNIE模型汇总
ERNIE模型汇总

3.3 预训练模型加载

PaddleNLP内置了ERNIE、BERT、RoBERTa、Electra等40多个的预训练模型,并且内置了各种预训练模型对于不同下游任务的Fine-tune网络。用户可以使用PaddleNLP提供的模型,完成问答、序列分类、token分类等任务。

这里以ERNIE 3.0模型为例,介绍如何将预训练模型Fine-tune完成文本分类任务。

PaddleNLP采用AutoModelForSequenceClassification,AutoTokenizer提供了简单易用的接口,可以用过from_pretrained() 方法来加载不同的预训练模型,在输出层上叠加一层线性层,且相应预训练模型权重下载速度快、稳定。

下面以ERNIE 3.0中文base模型为基础,演示如何添加预训练语言模型和分词器:

-------------------------------------------------------------------------------------------------------------------------

sudo yum install git

git clone https://github.com/PaddlePaddle/PaddleNLP.git

pip3 install --upgrade paddlenlp

pip install paddlepaddle

参考:

PaddleNLP/applications/text_classification at develop · PaddlePaddle/PaddleNLP · GitHub

如何选择合适的方案和预训练模型、数据标注质量差、效果调优困难、AI入门成本高、如何高效训练部署等问题使部分开发者望而却步

文本分类应用针对多分类、多标签、层次分类等高频场景开源了产业级分类应用方案,打通数据标注-模型训练-模型调优-模型压缩-预测部署全流程,旨在解决细分场景应用的痛点和难点,快速实现文本分类产品落地。

  • 方案全面🎓: 涵盖多分类、多标签、层次分类等高频分类场景,提供预训练模型微调、提示学习(小样本学习)、语义索引三种端到端全流程分类方案,满足开发者多样文本分类落地需求。
  • 高效调优✊: 文本分类应用依托TrustAI可信增强能力和数据增强API,提供模型分析模块助力开发者实现模型分析,并提供稀疏数据筛选、脏数据清洗、数据增强等多种解决方案。

2.1 文本分类方案全覆盖

文本分类应用涵盖多分类(multi class)、多标签(multi label)、层次分类(hierarchical)三种场景

多分类🚶: 数据集的标签集含有两个或两个以上的类别,所有输入句子/文本有且只有一个标签。在文本多分类场景中,我们需要预测输入句子/文本最可能来自 n 个标签类别中的哪一个类别。以上图多分类中新闻文本为例,该新闻文本的标签为 娱乐

二分类/多分类数据集的标签集含有两个或两个以上的类别,所有输入句子/文本有且只有一个标签。在文本多分类场景中,我们需要预测输入句子/文本最可能来自 n 个标签类别中的哪一个类别。在本项目中二分类任务被视为多分类任务中标签集包含两个类别的情况,以下统一称为多分类任务。。多分类任务在商品分类、网页标签、新闻分类、医疗文本分类等各种现实场景中具有广泛的适用性。

问题 ---- lable --- {新闻,娱乐}

问题       lable       分类

-------------------------------

多分类数据标注-模型训练-模型分析-模型压缩-预测部署流程图


接下来我们将以CBLUE公开数据集KUAKE-QIC任务为示例,演示多分类全流程方案使用。下载数据集:

wget https://paddlenlp.bj.bcebos.com/datasets/KUAKE_QIC.tar.gz

tar -zxvf KUAKE_QIC.tar.gz

mv KUAKE_QIC data
rm -rf KUAKE_QIC.tar.gz

训练需要准备指定格式的本地数据集,如果没有已标注的数据集,可以参考文本分类任务doccano数据标注使用指南进行文本分类数据标注。指定格式本地数据集目录结构:

训练、开发、测试数据集 文件中文本与标签类别名用tab符'\t'分隔开,文本中避免出现tab符'\t'

2.4 模型训练

推荐使用 Trainer API 对模型进行微调。只需输入模型、数据集等就可以使用 Trainer API 高效快速地进行预训练、微调和模型压缩等任务,可以一键启动多卡训练、混合精度训练、梯度累积、断点重启、日志显示等功能,Trainer API 还针对训练过程的通用训练配置做了封装,比如:优化器、学习率调度等。

2.4.1 预训练模型微调

https://github.com/PaddlePaddle/PaddleNLP/blob/develop/applications/text_classification/multi_class/README.md

使用CPU训练只需将设备参数配置改为--device cpu,可以使用--device gpu:0指定GPU卡号:

python3 train.py --do_train --do_eval --do_export --model_name_or_path ernie-3.0-tiny-medium-v2-zh --output_dir checkpoint --device cpu --num_train_epochs 100 --early_stopping True --early_stopping_patience 5 --learning_rate 3e-5 --max_length 128 --per_device_eval_batch_size 32 --per_device_train_batch_size 32 --metric_for_best_model accuracy --load_best_model_at_end --logging_steps 5 --evaluation_strategy epoch --save_strategy epoch --save_total_limit 1

python3 train.py --do_train --do_eval --do_export --model_name_or_path ernie-3.0-tiny-medium-v2-zh --output_dir checkpoint --device gpu:0 --early_stopping True --early_stopping_patience 5 --learning_rate 3e-5 --max_length 128 --per_device_eval_batch_size 32 --per_device_train_batch_size 32 --metric_for_best_model accuracy --load_best_model_at_end --logging_steps 5 --evaluation_strategy epoch --save_strategy epoch --save_total_limit 1


train

paddle.device.set_device('cpu')  

找个gpu的服务

https://aistudio.baidu.com/bd-cpu-01/user/7541663/7506482/lab

conda install cudatoolkit=10.2

参考:安装paddlepadddle-gpu的正确方式_please use paddlepaddle with gpu version-CSDN博客

python -m pip install paddlepaddle-gpu==2.5.2.post102 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html

 python -m pip install paddlepaddle-gpu==2.5.2.post102 -f https://www.paddlepaddle.org.cn/whl/linux/mkl/avx/stable.html

这个是好事gpu的,

find . -name "libcudart.so.10.2"

参考:https://blog.csdn.net/weixin_45742602/article/details/129386113

成功的命令:

python3 train.py --do_train --do_eval --do_export --model_name_or_path ernie-3.0-tiny-medium-v2-zh --output_dir checkpoint --device gpu:0 --early_stopping True --early_stopping_patience 5 --learning_rate 3e-5 --max_length 128 --per_device_eval_batch_size 32 --per_device_train_batch_size 32 --metric_for_best_model accuracy --load_best_model_at_end --logging_steps 5 --evaluation_strategy epoch --save_strategy epoch --save_total_limit 1

python3 train.py --do_train --do_eval --do_export --model_name_or_path ernie-3.0-tiny-medium-v2-zh --output_dir checkpoint --device gpu:0 --early_stopping_patience 5 --learning_rate 3e-5 --max_length 128 --per_device_eval_batch_size 16 --per_device_train_batch_size 16 --metric_for_best_model accuracy --load_best_model_at_end --logging_steps 5 --evaluation_strategy epoch --save_strategy epoch --save_total_limit 1

python3 train.py --do_train --do_eval --do_export --model_name_or_path ernie-3.0-tiny-medium-v2-zh --output_dir checkpoint --device gpu:0 --early_stopping_patience 5 --learning_rate 3e-5 --max_length 128 --metric_for_best_model accuracy --load_best_model_at_end --logging_steps 5 --evaluation_strategy epoch --save_strategy epoch --save_total_limit 1

终于跑成功了  要吐血了。。。!

nvidia-smi命令查看GPU使用情况:

主要的配置的参数为:

  • do_train: 是否进行训练。
  • do_eval: 是否进行评估。
  • debug: 与do_eval配合使用,是否开启debug模型,对每一个类别进行评估。
  • do_export: 训练结束后是否导出静态图。
  • do_compress: 训练结束后是否进行模型裁剪。
  • model_name_or_path: 内置模型名,或者模型参数配置目录路径。默认为ernie-3.0-tiny-medium-v2-zh
  • output_dir: 模型参数、训练日志和静态图导出的保存目录。
  • device: 使用的设备,默认为gpu
  • num_train_epochs: 训练轮次,使用早停法时可以选择100。
  • early_stopping: 是否使用早停法,也即一定轮次后评估指标不再增长则停止训练。
  • early_stopping_patience: 在设定的早停训练轮次内,模型在开发集上表现不再上升,训练终止;默认为4。
  • learning_rate: 预训练语言模型参数基础学习率大小,将与learning rate scheduler产生的值相乘作为当前学习率。
  • max_length: 最大句子长度,超过该长度的文本将被截断,不足的以Pad补全。提示文本不会被截断。
  • per_device_train_batch_size: 每次训练每张卡上的样本数量。可根据实际GPU显存适当调小/调大此配置。
  • per_device_eval_batch_size: 每次评估每张卡上的样本数量。可根据实际GPU显存适当调小/调大此配置。
  • max_length: 最大句子长度,超过该长度的文本将被截断,不足的以Pad补全。提示文本不会被截断。
  • train_path: 训练集路径,默认为"./data/train.txt"。
  • dev_path: 开发集集路径,默认为"./data/dev.txt"。
  • test_path: 测试集路径,默认为"./data/dev.txt"。
  • label_path: 标签路径,默认为"./data/label.txt"。
  • bad_case_path: 错误样本保存路径,默认为"./data/bad_case.txt"。
  • width_mult_list:裁剪宽度(multi head)保留的比例列表,表示对self_attention中的 qkv 以及 ffn 权重宽度的保留比例,保留比例乘以宽度(multi haed数量)应为整数;默认是None。 训练脚本支持所有TrainingArguments的参数,更多参数介绍可参考

https://github.com/PaddlePaddle/PaddleNLP/blob/develop/applications/text_classification/multi_class/README.md

程序运行时将会自动进行训练,评估。同时训练过程中会自动保存开发集上最佳模型在指定的 output_dir 中,保存模型文件结构如下所示:

  • 中文训练任务(文本支持含部分英文)推荐使用"ernie-1.0-large-zh-cw"、"ernie-3.0-tiny-base-v2-zh"、"ernie-3.0-tiny-medium-v2-zh"、"ernie-3.0-tiny-micro-v2-zh"、"ernie-3.0-tiny-mini-v2-zh"、"ernie-3.0-tiny-nano-v2-zh"、"ernie-3.0-tiny-pico-v2-zh"。
2.4.2 训练评估

训练后的模型我们可以开启debug模式,对每个类别分别进行评估,并打印错误预测样本保存在bad_case.txt

python train.py \
    --do_eval \
    --debug True \
    --device gpu \
    --model_name_or_path checkpoint \
    --output_dir checkpoint \
    --per_device_eval_batch_size 32 \
    --max_length 128 \
    --test_path './data/dev.txt'

python train.py --do_eval --debug --device gpu:0 --model_name_or_path checkpoint --output_dir checkpoint --per_device_eval_batch_size 32 --max_length 128 --test_path './data/dev.txt'

文本分类预测过程中常会遇到诸如"模型为什么会预测出错误的结果","如何提升模型的表现"等问题。Analysis模块 提供了可解释性分析、数据优化等功能,旨在帮助开发者更好地分析文本分类模型预测结果和对模型效果进行优化。

2.4.3 模型裁剪(可选)

如果有模型部署上线的需求,需要进一步压缩模型体积,可以使用 PaddleNLP 的 压缩API, 一行命令即可启动模型裁剪。

pip install paddleslim==2.4.1

python train.py \
    --do_compress \
    --device gpu \
    --model_name_or_path checkpoint \
    --output_dir checkpoint/prune \
    --learning_rate 3e-5 \
    --per_device_train_batch_size 32 \
    --per_device_eval_batch_size 32 \
    --num_train_epochs 1 \
    --max_length 128 \
    --logging_steps 5 \
    --save_steps 100 \
    --width_mult_list '3/4' '2/3' '1/2'

还是没有成功。。。

 nvcc -V

https://gitee.com/paddlepaddle/PaddleSlim

还是有问题  尚未解决

2.5 模型预测

可配置参数说明

  • task_path:自定义任务路径,默认为None。
  • is_static_model:task_path中是否为静态图模型参数,默认为False。
  • max_length:最长输入长度,包括所有标签的长度,默认为512。
  • batch_size:批处理大小,请结合机器情况进行调整,默认为1。
  • id2label:标签映射字典,如果task_path中包含id2label.json或加载动态图参数无需定义。
  • precision:选择模型精度,默认为fp32,可选有fp16fp32fp16推理速度更快。如果选择fp16,请先确保机器正确安装NVIDIA相关驱动和基础软件,确保CUDA>=11.2,cuDNN>=8.1.1,初次使用需按照提示安装相关依赖。

用这个服务器即可,环境已搭建好了:

ERNIE 3.0_体验1 (baidu.com)

2.6 模型效果

在线服务化部署搭建请参考:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1482287.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

StarRocks实战——表设计规范与监控体系

目录 前言 一、StarRocks表设计 1.1 字段类型 1.2 分区分桶 1.2.1 分区规范 1.2.2 分桶规范 1.3 主键表 1.3.1 数据有冷热特征 1.3.2 大宽表 1.4 实际案例 1.4.1 案例一:主键表内存优化 1.4.2 案例一:Update内存超了,导致主键表导…

【AI Agent系列】【MetaGPT多智能体学习】5. 多智能体案例拆解 - 基于MetaGPT的智能体辩论(附完整代码)

本系列文章跟随《MetaGPT多智能体课程》(https://github.com/datawhalechina/hugging-multi-agent),深入理解并实践多智能体系统的开发。 本文为该课程的第四章(多智能体开发)的第三篇笔记。主要是对课程刚开始环境搭…

YOLOv9有效提点|加入SE、CBAM、ECA、SimAM等几十种注意力机制(一)

专栏介绍:YOLOv9改进系列 | 包含深度学习最新创新,主力高效涨点!!! 一、本文介绍 本文将以SE注意力机制为例,演示如何在YOLOv9种添加注意力机制! 《Squeeze-and-Excitation Networks》 SENet提出…

【六袆 - React】Next.js:React 开发框架;Next.js开发框架的特点

Next.js:React 开发框架 Next.js的特点 1.直观的、基于页面的路由系统(并支持动态路由) Next.js 提供了基于文件系统的路由,意味着你可以通过创建页面文件来定义路由。 伪代码示例: // pages/index.js export defa…

css【详解】—— 圣杯布局 vs 双飞翼布局 (含手写清除浮动 clearfix)

两者功能效果相同&#xff0c;实现方式不同 效果预览 两侧宽度固定&#xff0c;中间宽度自适应&#xff08;三栏布局&#xff09;中间部分优先渲染允许三列中的任意一列成为最高列 圣杯布局 通过左右栏填充容器的左右 padding 实现&#xff0c;更多细节详见注释。 <!DOCTYP…

day03-Vue-Element

一、Ajax 1 Ajax 介绍 1.1 Ajax 概述 概念&#xff1a;Asynchronous JavaScript And XML&#xff0c;异步 的 JavaScript 和 XML。 作用&#xff1a; 数据交换&#xff1a;通过 Ajax 可以给服务器发送请求&#xff0c;并获取服务器响应的数据。异步交互&#xff1a;可以在 不…

排序(2)——希尔排序

希尔排序&#xff08;缩小增量排序&#xff09; 基本思想 希尔排序法又称缩小增量法。希尔排序法的基本思想是&#xff1a;先选定一个整数&#xff0c;把待排序文件中所有记录分成个组&#xff0c;所有距离为的记录分在同一组内&#xff0c;并对每一组内的记录进行排序。然后&…

lotus 从矿工可用余额扣除扇区质押

修改 miner配置文件 # Whether to use available miner balance for sector collateral instead of sending it with each message## type: bool# env var: LOTUS_SEALING_COLLATERALFROMMINERBALANCE#CollateralFromMinerBalance falseCollateralFromMinerBalance true质押金…

手写数字识别(慕课MOOC人工智能之模式识别)

问题&#xff1a;手写数字识别 数据集 数据集链接请点击我 代码 %mat2vector.m function [data_] mat2vector(data,num)[row,col,~] size(data);data_zeros(num,row*col);for page 1:numfor rows 1:rowfor cols1:coldata_(page,((rows-1)*colcols)) im2double(data(rows,cols…

应用稳定性优化1:ANR问题全面解析

闪退、崩溃、无响应、重启等是应用稳定性常见的问题现象&#xff0c;稳定性故障大体可归类为ANR/冻屏、Crash/Tombstone、资源泄露三大类。本文通过对三类故障的产生原因、故障现象、触发机制及如何定位等&#xff0c;展开深度解读。 本文将详解ANR类故障&#xff0c;并通过一…

java数据结构与算法刷题-----LeetCode437. 路径总和 III(前缀和必须掌握)

java数据结构与算法刷题目录&#xff08;剑指Offer、LeetCode、ACM&#xff09;-----主目录-----持续更新(进不去说明我没写完)&#xff1a;https://blog.csdn.net/grd_java/article/details/123063846 文章目录 1. 深度优先2. 前缀和 1. 深度优先 解题思路&#xff1a;时间复…

图书推荐||Word文稿之美

让你的文档从平凡到出众&#xff01; 本书内容 《Word文稿之美》是一本全面介绍Word排版技巧和应用的实用指南。从初步认识数字排版到高效利用模板、图文配置和表格与图表的排版技巧&#xff0c;再到快速修正错误和保护文件&#xff0c;全面系统地讲解数字排版的技术和能力&…

多行业万能预约门店小程序源码系统 支持多门店预约小程序 带完整的安装代码包以及搭建教程

随着消费者对于服务体验要求的不断提升&#xff0c;门店预约系统成为了许多行业提升服务质量、提高运营效率的重要工具。然而&#xff0c;市面上的预约系统往往功能单一&#xff0c;无法满足多行业、多场景的个性化需求。下面&#xff0c;小编集合了多年的行业经验和技术积累&a…

Linux 安装k8s

官网 常见的三种安装k8s方式 1.kubeadm 2.kops&#xff1a;自动化集群制备工具 3.kubespray&#xff1a; 提供了 Ansible Playbook 下面以kubeadm安装k8s kubeadm的安装是通过使用动态链接的二进制文件完成的&#xff0c;目标系统需要提供 glibc ##使用 ss 或者 netstat 检测端…

基于Springboot的高校实习信息发布网站的设计与实现(有报告)。Javaee项目,springboot项目。

演示视频&#xff1a; 基于Springboot的高校实习信息发布网站的设计与实现&#xff08;有报告&#xff09;。Javaee项目&#xff0c;springboot项目。 项目介绍&#xff1a; 采用M&#xff08;model&#xff09;V&#xff08;view&#xff09;C&#xff08;controller&#xf…

jmeter如何请求访问https接口

添加线程组http请求 新建线程组&#xff0c;添加http请求 填入协议&#xff0c;ip&#xff0c;端口&#xff0c;请求类型&#xff0c;路径&#xff0c;以及请求参数&#xff0c;查看结果树等。 然后最关键的一步来了。 导入证书 步骤&#xff1a;获取证书&#xff0c;重新生…

Windows11家庭版安装Docker

文章目录 安装Docker安装hyper-v继续解决报错完成效果图进一步测试是否完成安装 安装Docker windows如何安装docker 装好之后&#xff0c;我打开报错。 安装hyper-v 按这个视频操作&#xff1a;Windows 11 家庭版安装 Hyper-V bat文件里的代码是&#xff1a; pushd "…

机器学习 | 模型性能评估

目录 一. 回归模型的性能评估1. 平均平方误差(MSE)2. 平均绝对误差(MAE)3. R 2 R^{2} R2 值3.1 R 2 R^{2} R2优点 二. 分类模型的性能评估1. 准确率&#xff08;Accuracy&#xff09;2. 召回率&#xff08;Recall&#xff09;3. 精确率&#xff08;Precision&#xff09;4. …

指针篇章-(1)

指针&#xff08;1&#xff09;学习流程 —————————————————————————————————————————————————————————————————————————————————————————————————————————————…

帝国cms7.5仿非小号区块链门户资讯网站源码 带手机版

帝国cms7.5仿非小号区块链门户资讯网站源码 带手机版 带自动采集 开发环境&#xff1a;帝国cms 7.5 安装环境&#xff1a;phpmysql 包含火车头采集规则和模块&#xff0c;采集目标站非小号官网。 专业的数字货币大数据平台模板&#xff0c;采用帝国cms7.5内核仿制&#xff0…