YOLOv8改进,添加GSConv+Slim Neck,有效提升目标检测效果,代码改进(超详细)

news2024/11/16 17:53:06

目录

摘要

 主要想法

GSConv

GSConv代码实现 

 slim-neck

  slim-neck代码实现

yaml文件

完整代码分享

总结


摘要

目标检测是计算机视觉中重要的下游任务。对于车载边缘计算平台来说,巨大的模型很难达到实时检测的要求。而且,由大量深度可分离卷积层构建的轻量级模型无法达到足够的精度。我们引入了一种新的轻量级卷积技术 GSConv,以减轻模型重量但保持准确性。 GSConv 在模型的准确性和速度之间实现了出色的权衡。并且,我们提供了一种设计范例,细颈,以实现探测器更高的计算成本效益。我们的方法的有效性在二十多组比较实验中得到了强有力的证明。特别是,与原始检测器相比,通过我们的方法改进的检测器获得了最先进的结果(例如,在公开数据集的Tesla T4 GPU 上以100FPS 的速度获得 70.9% mAP0.5)。

 主要想法

生物大脑处理信息的强大能力和低能耗远远超出了计算机。简单地无休止地增加模型参数的数量并不能建立强大的模型。轻量化设计可以有效缓解现阶段高昂的计算成本。这个目的主要是通过深度可分离卷积(DSC)运算来减少参数量和浮点运算(FLOP)来实现的,效果很明显。然而DSC的缺点也很明显:在计算过程中输入图像的通道信息被分离。这一缺陷导致 DSC 的特征提取和融合能力比标准卷积 (SC) 低得多。

 SC(左) 和 DSC(右) 的计算过程。 SC是通道密集卷积计算,DSC是通道稀疏卷积计算。

GSConv

尽管DSC有一定的优点,但DSC 的缺陷在主干中直接被放大,无论是用于图像分类还是检测。我们相信SC和DSC可以合作。我们注意到,仅通过混洗 DSC 输出通道生成的特征图仍然是“深度分离”。为了使DSC的输出尽可能接近SC,我们引入了一种新方法——SC、DSC和shuffle的混合卷积,命名为GSConv。如图所示,我们使用shuffle将SC(通道密集卷积运算)生成的信息渗透到DSC生成的信息的每个部分中。shuffle是一种统一的混合策略。该方法通过在不同通道上统一交换局部特征信息,可以将来自 SC 的信息完全混合到 DSC 的输出中,而无需任何附加功能。

GSConv 模块的结构—— “Conv”框由三层组成:卷积 2D 层、批量归一化 2D 层和激活层。这里蓝色标记的“DWConv”表示DSC操作。
GSConv代码实现 
import torch
import torch.nn as nn
import math


# GSConvE test
class GSConvE(nn.Module):
    '''
    GSConv enhancement for representation learning: generate various receptive-fields and
    texture-features only in one Conv module
    https://github.com/AlanLi1997/slim-neck-by-gsconv
    '''
    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
        super().__init__()
        c_ = c2 // 4
        self.cv1 = Conv(c1, c_, k, s, None, g, act)
        self.cv2 = Conv(c_, c_, 9, 1, None, c_, act)
        self.cv3 = Conv(c_, c_, 13, 1, None, c_, act)
        self.cv4 = Conv(c_, c_, 17, 1, None, c_, act)

    def forward(self, x):
        x1 = self.cv1(x)
        x2 = self.cv2(x1)
        x3 = self.cv3(x1)
        x4 = self.cv4(x1)

        y = torch.cat((x1, x2, x3, x4), dim=1)
        # shuffle
        y = y.reshape(y.shape[0], 2, y.shape[1] // 2, y.shape[2], y.shape[3])
        y = y.permute(0, 2, 1, 3, 4)
        return y.reshape(y.shape[0], -1, y.shape[3], y.shape[4])


def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p


class Conv(nn.Module):
    # C_B_M
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.Mish() if act else (act if isinstance(act, nn.Module) else nn.Identity())

    def forward(self, x):
        return self.act(self.bn(self.conv(x)))

    def forward_fuse(self, x):
        return self.act(self.conv(x))


class GSConv(nn.Module):
    # GSConv https://github.com/AlanLi1997/slim-neck-by-gsconv
    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
        super().__init__()
        c_ = c2 // 2
        self.cv1 = Conv(c1, c_, k, s, None, g, act)
        self.cv2 = Conv(c_, c_, 5, 1, None, c_, act)

    def forward(self, x):
        x1 = self.cv1(x)
        x2 = torch.cat((x1, self.cv2(x1)), 1)
        # shuffle
        y = x2.reshape(x2.shape[0], 2, x2.shape[1] // 2, x2.shape[2], x2.shape[3])
        y = y.permute(0, 2, 1, 3, 4)
        return y.reshape(y.shape[0], -1, y.shape[3], y.shape[4])


class GSConvns(GSConv):
    # GSConv with a normative-shuffle https://github.com/AlanLi1997/slim-neck-by-gsconv
    def __init__(self, c1, c2, k=1, s=1, g=1, act=True):
        super().__init__(c1, c2, k=1, s=1, g=1, act=True)
        c_ = c2 // 2
        self.shuf = nn.Conv2d(c_ * 2, c2, 1, 1, 0, bias=False)

    def forward(self, x):
        x1 = self.cv1(x)
        x2 = torch.cat((x1, self.cv2(x1)), 1)
        # normative-shuffle, TRT supported
        return nn.ReLU(self.shuf(x2))


class GSBottleneck(nn.Module):
    # GS Bottleneck https://github.com/AlanLi1997/slim-neck-by-gsconv
    def __init__(self, c1, c2, k=3, s=1):
        super().__init__()
        c_ = c2 // 2
        # for lighting
        self.conv_lighting = nn.Sequential(
            GSConv(c1, c_, 1, 1),
            GSConv(c_, c2, 3, 1, act=False))
        self.shortcut = Conv(c1, c2, 1, 1, act=False)

    def forward(self, x):
        return self.conv_lighting(x) + self.shortcut(x)


class DWConv(Conv):
    # Depth-wise convolution class
    def __init__(self, c1, c2, k=1, s=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__(c1, c2, k, s, g=math.gcd(c1, c2), act=act)


class GSBottleneckC(GSBottleneck):
    # cheap GS Bottleneck https://github.com/AlanLi1997/slim-neck-by-gsconv
    def __init__(self, c1, c2, k=3, s=1):
        super().__init__(c1, c2, k, s)
        self.shortcut = DWConv(c1, c2, 3, 1, act=False)


class VoVGSCSP(nn.Module):
    # VoVGSCSP module with GSBottleneck
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        # self.gc1 = GSConv(c_, c_, 1, 1)
        # self.gc2 = GSConv(c_, c_, 1, 1)
        self.gsb = GSBottleneck(c_, c_, 1, 1)
        self.res = Conv(c_, c_, 3, 1, act=False)
        self.cv3 = Conv(2*c_, c2, 1)  #

    def forward(self, x):

        x1 = self.gsb(self.cv1(x))
        y = self.cv2(x)
        return self.cv3(torch.cat((y, x1), dim=1))
 slim-neck

此外,还研究了增强 CNN 学习能力的通用方法,例如 DensNet 、VoVNet 和 CSPNet ,然后根据这些方法的理论设计 slim-neck 的结构。我们设计了细长的颈部,以降低检测器的计算复杂性和推理时间,但保持精度。 GSConv完成了降低计算复杂度的任务,而减少推理时间并保持精度的任务需要新的模型。 

GSConv的计算成本约为SC的50%(0.5+0.5C1,C1值越大,比例越接近50%),但其对模型学习能力的贡献与后者相当。基于GSConv,我们在GSConv的基础上继续引入GS瓶颈,下图(a)展示了GS瓶颈模块的结构。然后,我们使用一次性聚合方法设计跨阶段部分网络(GSCSP)模块VoV-GSCSP。图(b)(c)和(d)分别显示了我们为VoV-GSCSP提供的三种设计方案,其中(b)简单直接且推理速度更快,(c)和(d)具有功能的重用率更高。事实上,结构越简单的模块由于硬件友好而更容易被使用。下表也详细报告了VoV-GSCSP1、2、3三种结构的消融研究结果,事实上,VoVGSCSP1表现出更高的性价比。最后,我们需要灵活地使用 GSConv、GS 瓶颈和 VoV-GSCSP 这四个模块。

(a) GS瓶颈模块和(b)、(c)、(d) VoV-GSCSP1、2、3模块的结构

细颈 yolov5n 的三种不同 VoV-GSCSP 模块的比较
  slim-neck代码实现
class VoVGSCSPC(VoVGSCSP):
    # cheap VoVGSCSP module with GSBottleneck
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):
        super().__init__(c1, c2, e)
        c_ = int(c2 * e)  # hidden channels
        self.gsb = GSBottleneckC(c_, c_, 3, 1)

代码都添加在common.py中 

yaml文件
# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
# Slim-neck by GSConv: A better design paradigm of detector architectures for autonomous vehicle
# Parameters
nc: 80  # number of classes
depth_multiple: 0.33  # model depth multiple
width_multiple: 0.25  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, GSConv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, VoVGSCSP, [512, False]],  # 13

   [-1, 1, GSConv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, VoVGSCSP, [256, False]],  # 17 (P3/8-small)

   [-1, 1, GSConv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, VoVGSCSP, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, GSConv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, VoVGSCSP, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors]],  # Detect(P3, P4, P5)
  ]
完整代码分享

https://download.csdn.net/download/m0_67647321/88885727icon-default.png?t=N7T8https://download.csdn.net/download/m0_67647321/88885727

总结

本实验引入了一种新的轻量级卷积方法 GSConv,使深度可分离卷积达到接近普通卷积的效果并且更加高效。设计了一次性聚合模块 VoV-GSCSP 来代替普通的瓶颈模块以加速推理。此外,我们还提供轻量化的细颈设计范例。在我们的实验中,与其他轻量级卷积方法相比,GSConv 显示出更好的性能。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1476742.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Blazor 向 ECharts 传递 option

目标 将ECharts封装为Blazor组件,然后通过jsRuntime向ECharts传递参数,即设置option。 封装ECharts 步骤: 1. 在index.html中引入echarts.min.js; 2. 创建blazor组件,将ref传递给js用于初始化echarts; …

redhat8.6环境下搭建Nextcloud私有云盘

目录 一、nextcoud简介 nextcloud功能: 获取Nextcloud: 二、安装步骤 第一步:编辑网页文件 添加域名管理信息 第二步:上传文件包 将nextcloud包移动到/nextcloud 解压: 也可以使用这个命令: 第三…

TensorFlow 使用 Rust 指南

一、概述 TensorFlow是由 Google Brain 团队开发的强大的开源机器学习框架,已成为人工智能的基石。虽然传统上与 Python 等语言相关,但 Rust(一种因其性能和安全性而受到重视的系统编程语言)的出现为 TensorFlow 爱好者开辟了新的…

信创生态丨九州未来与openEuler完成兼容互认证

近期,九州未来与openEuler开源社区完成产品兼容性互认证,并获得openEuler技术测评证书。测试结果显示,针对系统构建、兼容性、安全性、性能四个维度,九州未来自主研发的Animbus IaaS V8与openEuler 20.03 LTS SP3版本相互兼容性良…

创新之巅 健康之选 森歌集成灶智能水洗新揭秘

2024年2月27日,一场引领智能厨电风潮的盛会在杭州隆重召开。森歌集成灶以“勠力同心 共生共歌”为主题,成功举办了2024森歌智能厨电优秀经销商峰会。此次峰会上,森歌集成灶发布了令人瞩目的奥运冠军同款智能厨电新品——森歌鲸洗小灶Z60&…

3_相机模型

相机标定对于联系相机测量和真实三维世界测量也很重要。它的重要性在于场景不仅仅是三维的,也是物理单位度量的空间。因此,确定相机的自然单位(像素)与物理单位(如mm)的关系是三维场景重构的重要部分。相机标定的过程既给出相机的几何模型又给出透镜的畸…

从win11切换到ubuntu20的第1天

我不想做双系统,反正win11也没有意思,打游戏直接去网吧,所以电脑直接重装了ubuntu20,为什么不是ubuntu22?因为版本太新,很多东西不支持。为什么不装ubuntu18?因为我电脑装完了之后不支持外界显示…

springboot互联网智能导诊系统源码支持微信小程序

目录 智慧导诊系统开发原理 智慧导诊系统特点: 智能导诊功能介绍 支持通过主诉及症状进行导诊 智慧导诊系统概述 挂号引导 应用场景: 1.智慧医院 2.互联网医院 3.医疗健康平台 智慧导诊系统开发原理 导诊系统从原理上大致可分为基于规则模板和…

Presto简介、部署、原理和使用介绍

Presto简介、部署、原理和使用介绍 1. Presto简介 1-1. Presto概念 ​ Presto是由Facebook开发的一款开源的分布式SQL查询引擎,最初于2012年发布,并在2013年成为Apache项目的一部分;Presto 作为现在在企业中流行使用的即席查询框架&#x…

Outlook邮箱IMAP怎么开启?服务器怎么填?

Outlook邮箱IMAP服务器如何开启?Outlook设置IMAP的方法? Outlook邮箱作为其中的佼佼者,被广大用户所青睐。但在使用Outlook邮箱时,许多用户可能会碰到一个问题:如何开启IMAP服务?下面,蜂邮EDM就…

IOC 和 AOP

IOC 所谓的IOC(inversion of control),就是控制反转的意思。何为控制反转? 在传统的程序设计中,应用程序代码通常控制着对象的创建和管理。例如,一个对象需要依赖其他对象,那么它会直接new出来…

瑞_Redis_Redis命令

文章目录 1 Redis命令Redis数据结构Redis 的 key 的层级结构1.0 Redis通用命令1.0.1 KEYS1.0.2 DEL1.0.3 EXISTS1.0.4 EXPIRE1.0.5 TTL 1.1 String类型1.1.0 String类型的常见命令1.1.1 SET 和 GET1.1.2 MSET 和 MGET1.1.3 INCR和INCRBY和DECY1.1.4 SETNX1.1.5 SETEX 1.2 Hash类…

德人合科技 | 公司办公终端、电脑文件数据\资料防泄密管理系统,自动智能无感透明加密保护、防止外泄

德人合科技提供的公司办公终端、电脑文件数据和资料防泄密管理系统是一种高效、智能的解决方案,旨在确保企业数据的安全性和保密性。该系统采用自动智能无感透明加密保护技术,能够在用户无感知的情况下对文件进行加密,从而从源头上保障数据的…

如何利用graylog进行容器化日志管理?

Docker日志 当一个容器启动的时候,它其实是docker deamon的一个子进程,docker daemon可以拿到容器里面进程的标准输出,然后通过自身的LogDriver模块来处理,LogDriver支持的方式很多,默认写到本地文件,也可…

HTML5+CSS3+JS小实例:右键菜单

实例:右键菜单 技术栈:HTML+CSS+JS 效果: 源码: 【HTML】 <!DOCTYPE html> <html lang="zh-CN"> <head><meta charset="UTF-8"><meta http-equiv="X-UA-Compatible" content="IE=edge"><met…

WPF margin属性学习

一开始margin如下&#xff0c;显示如下&#xff1b; margin有四个值的时候是left、top、right、bottom&#xff1b; 如果是Margin“20,10”&#xff0c;则是指left、right设置为20&#xff0c;top、bottom设置为10&#xff1b; 看上去有些问题&#xff0c;现在top为负&#xf…

Docker数据卷-自定义镜像

一.数据卷 1.1数据卷的基本使用 数据卷是一个特殊的目录&#xff0c;用于在Docker容器中持久化和共享数据。 数据卷的主要特点包括&#xff1a; 数据持久性&#xff1a;数据卷允许您在容器的生命周期之外保持数据的持久性。即使容器被删除&#xff0c;数据卷中的数据依然存在&…

在docker中搭建selenium 爬虫环境(3分钟快速搭建)

1、安装docker 省略 2、拉取镜像 docker pull selenium/standalone-chrome-debug 3、运行容器 docker run -d -p 4444:4444 -p 5900:5900 -v C:\Users\Public\VNC_Donwnloads:/home/seluser/Downloads --memory6g --name selenium_chrome selenium/standalone-chrome-debu…

day 45 ● 70. 爬楼梯 (进阶)● 322. 零钱兑换 ● 279.完全平方数

#include<bits/stdc.h> using namespace std; int main(){int n,m;cin>>n>>m;vector<int> dp(33,0);dp[0]1;for(int i0;i<n;i){for(int j1;j<m;j){if(i>j)dp[i]dp[i-j];}}// return dp[n];cout<<dp[n]<<endl;} 当然注意 力扣是 …

【全志D1-H 哪吒开发板】Debian系统安装调教和点灯指南

全志D1-H开发板【哪吒】使用Deabian系统入门 特别说明&#xff1a; 因为涉及到操作较多&#xff0c;博文可能会导致格式丢失 其中内容&#xff0c;会根据后续使用做优化调整 目录&#xff1a; 参考资料固件烧录启动调教点灯问题 〇、参考资料 官方资料 开发板-D1开发板【…