YOLOv5代码解读[02] models/yolov5l.yaml文件解析

news2024/12/24 10:23:42

文章目录

  • YOLOv5代码解读[02] models/yolov5l.yaml文件解析
    • yolov5l.yaml文件
    • 检测头1--->耦合头
    • 检测头2--->解耦头
    • 检测头3--->ASFF检测头
    • Model类解析
    • parse_model函数

YOLOv5代码解读[02] models/yolov5l.yaml文件解析

yolov5l.yaml文件

在这里插入图片描述

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license

# Parameters
nc: 27  # number of classes
depth_multiple: 1.0  # model depth multiple
width_multiple: 1.0  # layer channel multiple
anchors:
  - [10,13, 16,30, 33,23]  # P3/8
  - [30,61, 62,45, 59,119]  # P4/16
  - [116,90, 156,198, 373,326]  # P5/32

# YOLOv5 v6.0 backbone
backbone:
  # [from, number, module, args]
  [[-1, 1, Conv, [64, 6, 2, 2]],  # 0-P1/2
   [-1, 1, Conv, [128, 3, 2]],  # 1-P2/4
   [-1, 3, C3, [128]],
   [-1, 1, Conv, [256, 3, 2]],  # 3-P3/8
   [-1, 6, C3, [256]],
   [-1, 1, Conv, [512, 3, 2]],  # 5-P4/16
   [-1, 9, C3, [512]],
   [-1, 1, Conv, [1024, 3, 2]],  # 7-P5/32
   [-1, 3, C3, [1024]],
   [-1, 1, SPPF, [1024, 5]],  # 9
  ]

# YOLOv5 v6.0 head
head:
  [[-1, 1, Conv, [512, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 6], 1, Concat, [1]],  # cat backbone P4
   [-1, 3, C3, [512, False]],  # 13

   [-1, 1, Conv, [256, 1, 1]],
   [-1, 1, nn.Upsample, [None, 2, 'nearest']],
   [[-1, 4], 1, Concat, [1]],  # cat backbone P3
   [-1, 3, C3, [256, False]],  # 17 (P3/8-small)

   [-1, 1, Conv, [256, 3, 2]],
   [[-1, 14], 1, Concat, [1]],  # cat head P4
   [-1, 3, C3, [512, False]],  # 20 (P4/16-medium)

   [-1, 1, Conv, [512, 3, 2]],
   [[-1, 10], 1, Concat, [1]],  # cat head P5
   [-1, 3, C3, [1024, False]],  # 23 (P5/32-large)

   [[17, 20, 23], 1, Detect, [nc, anchors, False]],  # Detect(P3, P4, P5)
  ]

检测头1—>耦合头

class Detect(nn.Module):
    stride = None  
    onnx_dynamic = False
    export = False
    def __init__(self, nc=80, anchors=(), Decoupled=False, ch=(), inplace=True):  
        super().__init__()
        # 是否解耦头
        self.decoupled = Decoupled
        # 类别数目
        self.nc = nc  
        # 每个anchor输出维度 
        self.no = nc + 5  
        # 检测层的输出数量(不同尺度个数) 
        self.nl = len(anchors)  
        # 每个尺度特征图的anchor数量
        self.na = len(anchors[0]) // 2  
        # 初始化步长init grid
        self.grid = [torch.zeros(1)] * self.nl    
        # 初始化anchor grid
        self.anchor_grid = [torch.zeros(1)] * self.nl  
        # self.register_buffer("a", torch.ones(2,3))  
        # register_buffer的作用是将torch.ones(2,3)这个tensor注册到模型的buffers()属性中,并命名为a,
        # 这代表a对应的是一个持久态,不会有梯度传播给它,但是能被模型的state_dict记录下来,可以理解为模型的常数。
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # (3,3,2) == (nl,na,2)
        # 检测头head输出卷积
        # 如果是解耦头
        if self.decoupled:
            self.m = nn.ModuleList(DecoupledHead(x, self.nc, anchors) for x in ch) 
        # 如果是耦合头
        else:
            self.m = nn.ModuleList(nn.Conv2d(x, self.no*self.na, 1) for x in ch) 
        # use in-place ops (e.g. slice assignment)
        self.inplace = inplace  
        
    def forward(self, x):
        # inference output
        z = []
        # 对于每个尺度的特征图来说
        for i in range(self.nl):
            # conv
            # P3: [1, 128, 80, 80]->[1, 3*(nc+5), 80, 80]
            # P4: [1, 256, 40, 40]->[1, 3*(nc+5), 40, 40]
            # P5: [1, 512, 20, 20]->[1, 3*(nc+5), 20, 20]
            x[i] = self.m[i](x[i])
            # 以coco数据集为例,x(bs,255,20,20) -> x(bs,3,20,20,85)   (x,y,w,h,c,c1,c2,.........)
            bs, _, ny, nx = x[i].shape
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()

            # 推断过程inference
            if not self.training:
                # self.grid: [tensor([0.]), tensor([0.]), tensor([0.])]
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()

                if self.inplace:
                    # 中心点xy 网格grid
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]
                    # 长宽wh  锚anchor_grid
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]
                else:
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))

        return x if self.training else (torch.cat(z, 1),) if self.export else (torch.cat(z, 1), x)
    
    # # 转成caffe时候的代码
    # def forward(self, x):
    #     # inference output
    #     z = []
    #     # 对于每个尺度的特征图来说
    #     for i in range(self.nl):
    #         # conv
    #         # P3: [1, 128, 80, 80]->[1, 3*(nc+5), 80, 80]
    #         # P4: [1, 256, 40, 40]->[1, 3*(nc+5), 40, 40]
    #         # P5: [1, 512, 20, 20]->[1, 3*(nc+5), 20, 20]
    #         x[i] = self.m[i](x[i])
    #         # y = x[i]
    #         y = x[i].sigmoid()
    #         z.append(y)
    #     return z

    def _make_grid(self, nx=20, ny=20, i=0, torch_1_10=check_version(torch.__version__, '1.10.0')):
        d = self.anchors[i].device
        t = self.anchors[i].dtype
        y, x = torch.arange(ny, device=d, dtype=t), torch.arange(nx, device=d, dtype=t)
        # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
        if torch_1_10:
            yv, xv = torch.meshgrid(y, x, indexing='ij')
        else:
            yv, xv = torch.meshgrid(y, x)
        # 网格grid (x, y)
        # x[i] --> (bs,3,ny,nx,85)
        # grid --> (1,3,ny,nx,2)
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2))
        # 锚anchor (w, h)
        # x[i] --> (bs,3,ny,nx,85)
        # anchor_grid --> (1,3,ny,nx,2)
        # self.stride: tensor([ 8., 16., 32.])
        anchor_grid = (self.anchors[i].clone() * self.stride[i]).view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2))
        return grid, anchor_grid

检测头2—>解耦头

class DecoupledHead(nn.Module):
    def __init__(self, ch=256, nc=80, anchors=()):
        super().__init__()
        # 类别个数
        self.nc = nc
        # 检测层的数量
        self.nl = len(anchors)
        # 每一层anchor个数
        self.na = len(anchors[0]) // 2
        self.merge = Conv(ch, 128 , 1, 1)  # 默认256
        self.cls_convs1 = Conv(128, 64, 3, 1, 1)
        self.cls_convs2 = Conv(64, 64, 3, 1, 1)
        self.reg_convs1 = Conv(128, 64, 3, 1, 1)
        self.reg_convs2 = Conv(64, 64, 3, 1, 1)
        self.cls_preds = nn.Conv2d(64 , self.nc*self.na, 1)
        self.reg_preds = nn.Conv2d(64 , 4*self.na, 1)
        self.obj_preds = nn.Conv2d(64 , 1*self.na, 1)

    def forward(self, x):
        x = self.merge(x)
        x1 = self.cls_convs1(x)
        x1 = self.cls_convs2(x1)
        x1 = self.cls_preds(x1)
        x2 = self.reg_convs1(x)
        x2 = self.reg_convs2(x2)
        x21 = self.reg_preds(x2)
        x22 = self.obj_preds(x2)
        out = torch.cat([x21, x22, x1], 1)
        return out

检测头3—>ASFF检测头

class ASFF_Detect(nn.Module):  
    stride = None  
    onnx_dynamic = False   
    def __init__(self, nc=80, anchors=(), ch=(), multiplier=0.5, rfb=False, inplace=True):  
        super().__init__()
        # 类别数目
        self.nc = nc  
        # 每个anchor输出维度
        self.no = nc + 5  
        # 检测层的输出数量(不同尺度个数) 
        self.nl = len(anchors) 
        # 每个尺度特征图的anchor数量
        self.na = len(anchors[0]) // 2  
        # 初始化步长init grid
        self.grid = [torch.zeros(1)] * self.nl  
        # init anchor grid
        self.anchor_grid = [torch.zeros(1)] * self.nl
        # self.register_buffer("a", torch.ones(2,3))  
        # register_buffer的作用是将torch.ones(2,3)这个tensor注册到模型的buffers()属性中,并命名为a,
        # 这代表a对应的是一个持久态,不会有梯度传播给它,但是能被模型的state_dict记录下来,可以理解为模型的常数。
        self.register_buffer('anchors', torch.tensor(anchors).float().view(self.nl, -1, 2))  # (3,3,2) == (nl,na,2)
        # ASFF模块
        self.l0_fusion = ASFFV5(level=0, multiplier=multiplier, rfb=rfb)
        self.l1_fusion = ASFFV5(level=1, multiplier=multiplier, rfb=rfb)
        self.l2_fusion = ASFFV5(level=2, multiplier=multiplier, rfb=rfb)
        # 检测头head输出卷积
        self.m = nn.ModuleList(nn.Conv2d(x, self.no * self.na, 1) for x in ch)  
        # use in-place ops (e.g. slice assignment)
        self.inplace = inplace  

    def forward(self, x):
        # inference output
        z = []  
        result = []
        result.append(self.l2_fusion(x))
        result.append(self.l1_fusion(x))
        result.append(self.l0_fusion(x))
        x = result    
        
        # 对于每个尺度的特征图来说
        for i in range(self.nl):
            # conv 
            # P3: [1, 128, 80, 80]->[1, 3*(nc+5), 80, 80]
            # P4: [1, 256, 40, 40]->[1, 3*(nc+5), 40, 40]
            # P5: [1, 512, 20, 20]->[1, 3*(nc+5), 20, 20]
            x[i] = self.m[i](x[i])  
            # 以coco数据集为例,x(bs,255,20,20) -> x(bs,3,20,20,85)   (x,y,w,h,c,c1,c2,.........)
            bs, _, ny, nx = x[i].shape  
            x[i] = x[i].view(bs, self.na, self.no, ny, nx).permute(0, 1, 3, 4, 2).contiguous()
            
            # 推断过程inference 
            if not self.training:  
                # self.grid: [tensor([0.]), tensor([0.]), tensor([0.])]
                if self.onnx_dynamic or self.grid[i].shape[2:4] != x[i].shape[2:4]:
                    self.grid[i], self.anchor_grid[i] = self._make_grid(nx, ny, i)

                y = x[i].sigmoid()
              
                # 这块xy的计算存在大量疑惑?????????????????????????
                if self.inplace:
                    # 中心点xy 网格grid
                    y[..., 0:2] = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  
                    # 长宽wh  锚anchor_grid
                    y[..., 2:4] = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i] 
                else:  # for YOLOv5 on AWS Inferentia https://github.com/ultralytics/yolov5/pull/2953
                    xy = (y[..., 0:2] * 2 - 0.5 + self.grid[i]) * self.stride[i]  
                    wh = (y[..., 2:4] * 2) ** 2 * self.anchor_grid[i]  
                    y = torch.cat((xy, wh, y[..., 4:]), -1)
                z.append(y.view(bs, -1, self.no))
        
        return x if self.training else (torch.cat(z, 1), x)
    
    def _make_grid(self, nx=20, ny=20, i=0):
        d = self.anchors[i].device
        if check_version(torch.__version__, '1.10.0'):  # torch>=1.10.0 meshgrid workaround for torch>=0.7 compatibility
            yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)], indexing='ij')
        else:
            yv, xv = torch.meshgrid([torch.arange(ny, device=d), torch.arange(nx, device=d)])
        # 网格grid (x, y)
        # x[i] --> (bs,3,ny,nx,85)
        # grid --> (1,3,ny,nx,2)
        grid = torch.stack((xv, yv), 2).expand((1, self.na, ny, nx, 2)).float()
        # 锚anchor (w, h)
        # x[i] --> (bs,3,ny,nx,85)
        # anchor_grid --> (1,3,ny,nx,2)
        # self.stride: tensor([ 8., 16., 32.])
        anchor_grid = (self.anchors[i].clone() * self.stride[i]).view((1, self.na, 1, 1, 2)).expand((1, self.na, ny, nx, 2)).float()
        return grid, anchor_grid

Model类解析

class Model(nn.Module):
    def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  
        super().__init__()
        # 字典dict类型
        if isinstance(cfg, dict):
            self.yaml = cfg  
        # yaml文件
        else: 
            self.yaml_file = Path(cfg).name
            # 用ascii编码,忽略错误的形式打开文件cfg
            with open(cfg, encoding='ascii', errors='ignore') as f:
                self.yaml = yaml.safe_load(f)  
        
        # 输入通道
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  
        # 重写yaml文件中的nc
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  
        # 重写yaml文件中的anchors 
        if anchors:
            LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
            self.yaml['anchors'] = round(anchors)  
        
        # 根据yaml文件的model_dict解析模型
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch]) 
        # 默认类别名字 从0到nc-1
        self.names = [str(i) for i in range(self.yaml['nc'])] 
        self.inplace = self.yaml.get('inplace', True)
       
        # 设置Detect()中的inplace, stride, anchors
        m = self.model[-1]  
        if isinstance(m, Detect) or isinstance(m, ASFF_Detect):
            s = 256
            m.inplace = self.inplace
            # 根据前向传播forward 计算步长stride
            m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])
            # 把anchors放缩到了3个不同的尺度
            # 这块的形状为什么这样变化??????
            m.anchors /= m.stride.view(-1, 1, 1)
            # 根据YOLOv5 Detect()模块m的步幅顺序检查给定锚框顺序,必要时进行纠正。
            check_anchor_order(m)
            self.stride = m.stride
            if m.decoupled:
                LOGGER.info('decoupled done')
                pass 
            else:
                self._initialize_biases()  # only run once  

        # 初始化权重weights和偏置biases
        initialize_weights(self)
        self.info()
        LOGGER.info('')

    def forward(self, x, augment=False, profile=False, visualize=False):
        # 推断时增强augmented inference
        if augment:
            return self._forward_augment(x)  
        # 单尺度推断single-scale inference 或者训练train
        return self._forward_once(x, profile, visualize)  

    def _forward_augment(self, x):
        # height, width
        img_size = x.shape[-2:]  
        s = [1, 0.83, 0.67]  # scales
        f = [None, 3, None]  # flips (2-ud, 3-lr)
        y = []  # outputs
        for si, fi in zip(s, f):
            xi = scale_img(x.flip(fi) if fi else x, si, gs=int(self.stride.max()))
            yi = self._forward_once(xi)[0]  # forward
            # cv2.imwrite(f'img_{si}.jpg', 255 * xi[0].cpu().numpy().transpose((1, 2, 0))[:, :, ::-1])  # save
            yi = self._descale_pred(yi, fi, si, img_size)
            y.append(yi)
        y = self._clip_augmented(y)  # clip augmented tails
        return torch.cat(y, 1), None  # augmented inference, train

    def _forward_once(self, x, profile=False, visualize=False):
        y, dt = [], []  
        for m in self.model:
            # 输入不是来自于上一个层的输出
            if m.f != -1:  
                x = y[m.f] if isinstance(m.f, int) else [x if j == -1 else y[j] for j in m.f]
            if profile:
                self._profile_one_layer(m, x, dt)
            # 计算输出
            x = m(x)
            y.append(x if m.i in self.save else None) 
            # 特征可视化
            if visualize:
                feature_visualization(x, m.type, m.i, save_dir=visualize)
        return x

    def _descale_pred(self, p, flips, scale, img_size):
        # de-scale predictions following augmented inference (inverse operation)
        if self.inplace:
            p[..., :4] /= scale  # de-scale
            if flips == 2:
                p[..., 1] = img_size[0] - p[..., 1]  # de-flip ud
            elif flips == 3:
                p[..., 0] = img_size[1] - p[..., 0]  # de-flip lr
        else:
            x, y, wh = p[..., 0:1] / scale, p[..., 1:2] / scale, p[..., 2:4] / scale  # de-scale
            if flips == 2:
                y = img_size[0] - y  # de-flip ud
            elif flips == 3:
                x = img_size[1] - x  # de-flip lr
            p = torch.cat((x, y, wh, p[..., 4:]), -1)
        return p

    def _clip_augmented(self, y):
        # Clip YOLOv5 augmented inference tails
        nl = self.model[-1].nl  # number of detection layers (P3-P5)
        g = sum(4 ** x for x in range(nl))  # grid points
        e = 1  # exclude layer count
        i = (y[0].shape[1] // g) * sum(4 ** x for x in range(e))  # indices
        y[0] = y[0][:, :-i]  # large
        i = (y[-1].shape[1] // g) * sum(4 ** (nl - 1 - x) for x in range(e))  # indices
        y[-1] = y[-1][:, i:]  # small
        return y

    def _profile_one_layer(self, m, x, dt):
        c = isinstance(m, Detect) or isinstance(m, ASFF_Detect) # is final layer, copy input as inplace fix
        o = thop.profile(m, inputs=(x.copy() if c else x,), verbose=False)[0] / 1E9 * 2 if thop else 0  # FLOPs
        t = time_sync()
        for _ in range(10):
            m(x.copy() if c else x)
        dt.append((time_sync() - t) * 100)
        if m == self.model[0]:
            LOGGER.info(f"{'time (ms)':>10s} {'GFLOPs':>10s} {'params':>10s}  {'module'}")
        LOGGER.info(f'{dt[-1]:10.2f} {o:10.2f} {m.np:10.0f}  {m.type}')
        if c:
            LOGGER.info(f"{sum(dt):10.2f} {'-':>10s} {'-':>10s}  Total")

    def _initialize_biases(self, cf=None):  # initialize biases into Detect(), cf is class frequency
        # https://arxiv.org/abs/1708.02002 section 3.3
        # cf = torch.bincount(torch.tensor(np.concatenate(dataset.labels, 0)[:, 0]).long(), minlength=nc) + 1.
        m = self.model[-1]  
        # mi--> Conv2d(128, 255, kernel_size=(1, 1), stride=(1, 1)) 
        # s --> tensor(8.)
        for mi, s in zip(m.m, m.stride):  
            # conv.bias(255) to (3,85)
            b = mi.bias.view(m.na, -1)  
            b.data[:, 4] += math.log(8 / (640 / s) ** 2)  # obj (8 objects per 640 image)
            b.data[:, 5:] += math.log(0.6 / (m.nc - 0.999999)) if cf is None else torch.log(cf / cf.sum())  # cls
            mi.bias = torch.nn.Parameter(b.view(-1), requires_grad=True)

    def _print_biases(self):
        m = self.model[-1]  
        for mi in m.m:  
            b = mi.bias.detach().view(m.na, -1).T  
            LOGGER.info(('%6g Conv2d.bias:' + '%10.3g' * 6) % (mi.weight.shape[1], *b[:5].mean(1).tolist(), b[5:].mean()))

    def _print_weights(self):
        for m in self.model.modules():
            if type(m) is Bottleneck:
                LOGGER.info('%10.3g' % (m.w.detach().sigmoid() * 2))  # shortcut weights

    def fuse(self):  # fuse model Conv2d() + BatchNorm2d() layers
        LOGGER.info('Fusing layers... ')
        for m in self.model.modules():
            if isinstance(m, (Conv, DWConv)) and hasattr(m, 'bn'):
                m.conv = fuse_conv_and_bn(m.conv, m.bn)  # update conv
                delattr(m, 'bn')  # remove batchnorm
                m.forward = m.forward_fuse  # update forward
        self.info()
        return self

    def info(self, verbose=False, img_size=640):  
        # 打印模型信息
        model_info(self, verbose, img_size)

    def _apply(self, fn):
        # Apply to(), cpu(), cuda(), half() to model tensors that are not parameters or registered buffers
        self = super()._apply(fn)
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect) or isinstance(m, ASFF_Detect) or isinstance(m, Decoupled_Detect):
            m.stride = fn(m.stride)
            m.grid = list(map(fn, m.grid))
            if isinstance(m.anchor_grid, list):
                m.anchor_grid = list(map(fn, m.anchor_grid))
        return self

parse_model函数

def parse_model(d, ch):  
    # model_dict, input_channels(3)
    LOGGER.info(f"\n{'':>3}{'from':>18}{'n':>3}{'params':>10}  {'module':<40}{'arguments':<30}")
    # nc:类别数; gd:'depth_multiple'; gw:'width_multiple'
    anchors, nc, gd, gw = d['anchors'], d['nc'], d['depth_multiple'], d['width_multiple']
    # anchor数目, 每层为3
    na = (len(anchors[0]) // 2) if isinstance(anchors, list) else anchors 
    # 每层的输出,na*(classes+5)
    no = na * (nc + 5)  
                                        
    # layers, savelist, ch_out
    layers, save, c2 = [], [], ch[-1] 
    # from, number, module, args
    # 以[-1, 1, Conv, [64, 6, 2, 2]为例, ch=[3], f=-1, n=1, m=Conv, args=[64, 6, 2, 2]
    #   [-1, 1, Conv, [128, 3, 2]
    #   [-1, 3, C3, [128]]
    #   [-1, 1, SPPF, [1024, 5]]
    #   [-1, 1, nn.Upsample, [None, 2, 'nearest']]
    #   [[-1, 6], 1, Concat, [1]]
    #   [-1, 3, C3, [512, False]]
    for i, (f, n, m, args) in enumerate(d['backbone'] + d['head']):
        # 把strings转为本身的类型
        m = eval(m) if isinstance(m, str) else m  
        for j, a in enumerate(args):
            try:
                # 列表形式
                args[j] = eval(a) if isinstance(a, str) else a  
            except NameError:
                pass
        
        # depth_gain 深度缩放因子
        n = n_ = max(round(n*gd), 1) if n > 1 else n 
    
        # 对于不同类型的卷积模块   
        if m in [Conv, DWConv,  CrossConv, GhostConv, Bottleneck, GhostBottleneck,
                 BottleneckCSP, MobileBottleneck, SPP, SPPF, MixConv2d, Focus,
                 InvertedResidual, ConvBNReLU, C3, C3TR, C3SPP, C3Ghost, CoordAtt,
                 CoordAttv2, OSA_Stage]:
            # i=0, c1=3,  c2=64;  
            # i=1, c1=32, c2=128;  
            # i=2, c1=64, c2=128;
            # c1输入通道;c2输出通道;
            c1, c2 = ch[f], args[0]
            
            # width_gain 宽度缩放因子
            # 说明不是输出
            if c2 != no:  
                # 输出通道数必须为8的倍数
                c2 = make_divisible(c2*gw, 8)
            
            # i=0, [3,  32, 6, 2, 2]
            # i=1, [32, 64, 3, 2]
            # i=2, [64, 64]
            args = [c1, c2, *args[1:]]

            # 堆叠次数number of repeats
            # 注意网络设计理念:stage ---> block ---> layer
            if m in [BottleneckCSP, C3, C3TR, C3Ghost]:
                args.insert(2, n)  
                n = 1
        elif m is nn.BatchNorm2d:
            args = [ch[f]]
        elif m is Concat:
            c2 = sum(ch[x] for x in f)
        elif m is Detect:
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f)
        elif m is ASFF_Detect :
            args.append([ch[x] for x in f])
            if isinstance(args[1], int):  # number of anchors
                args[1] = [list(range(args[1] * 2))] * len(f) 
        elif m is Contract:
            c2 = ch[f] * args[0] ** 2
        elif m is Expand:
            c2 = ch[f] // args[0] ** 2
        elif m is ConvNeXt_Block:
            c2 = args[0]
            args = args[1:]
        else:
            c2 = ch[f]
        
        # module
        # Conv(3, 32, 6, 2, 2]
        m_ = nn.Sequential(*(m(*args) for _ in range(n))) if n > 1 else m(*args) 
        
        # m ===> <class 'models.common.Conv'>
        # str(m)[8:-2] ===> models.common.Conv
        t = str(m)[8:-2].replace('__main__.', '')  
        # 参数(parameters)/模型参数, 由模型通过学习得到的变量,比如权重和偏置.
        # m_.parameters(): <generator object Module.parameters at 0x7fcf4c2059d0>
        np = sum(x.numel() for x in m_.parameters()) 

        # attach index, 'from' index, type, number params
        m_.i, m_.f, m_.type, m_.np = i, f, t, np  
       
        LOGGER.info(f'{i:>3}{str(f):>18}{n_:>3}{np:10.0f}  {t:<40}{str(args):<30}')  
        
        # savelist  [6, 4, 14, 10, 17, 20, 23]
        save.extend(x % i for x in ([f] if isinstance(f, int) else f) if x != -1)  
        # layers列表
        layers.append(m_)
        if i == 0:
            ch = []
        # ch列表
        ch.append(c2)

    return nn.Sequential(*layers), sorted(save)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1461861.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

网络设备和网络软件

文章目录 网络设备和网络软件网卡交换机交换机的三个主要功能交换机的工作原理第二层交换和第三层交换交换机的堆叠和级联 路由器路由器工作原理 网关网关的分类 无线接入点(AP)调制解调器网络软件 网络设备和网络软件 网卡 网络接口卡又称网络适配器&#xff0c;简称网卡。网…

shell基础实验(1)

1、判断当前磁盘剩余空间是否有20G&#xff0c;如果小于20G&#xff0c;则将报警邮件发送给管理员&#xff0c;每天检查次磁盘剩余空间。 1.1.安装邮件服务,配置邮件服务 [rootserver ~]# yum install mailx -y[rootserver ~]# vim /etc/mail.rc set from1580540058qq.com …

抽象工厂模式 Abstract Factory

1.模式定义: 提供一个创建一系列相关或互相依赖对象的接口&#xff0c;而无需指定它们具体的类 2. 应用场景: 程序需要处理不同系列的相关产品&#xff0c;但是您不希望它依赖于这些产品的 具体类时&#xff0c; 可以使用抽象工厂 3.优点: 1.可以确信你从工厂得到的产品彼…

解决弹性布局父元素设置高自动换行,子元素均分高度问题(align-content: flex-start)

案例&#xff1a; <view class"abc"><view class"abc-item" v-for"(item,index) in 8" :key"index">看我</view> </view> <style lang"less">.abc{height: 100px;display: flex;flex-wrap: …

OD(8)之Mermaid流程图(flowcharts)使用详解

OD(8)之Mermaid流程图(flowcharts)使用详解 Author: Once Day Date: 2024年2月20日 漫漫长路才刚刚开始… 全系列文章可参考专栏: Linux实践记录_Once_day的博客-CSDN博客 参考文章: 关于 Mermaid | Mermaid 中文网 (nodejs.cn)Mermaid | Diagramming and charting tool‍…

数据结构—图

图是在数据结构中难度比较大&#xff0c;并且比较抽象一种数据结构。 图在地图&#xff0c;社交网络这方面有应用。 图的基本概念 图是由顶点集合及顶点间的关系组成的一种数据结构&#xff1a;G&#xff08;V&#xff0c;E&#xff09;。图标的英文&#xff1a;graph。 (x,…

Rust Vs Go:从头构建一个web服务

Go 和 Rust 之间的许多比较都强调它们在语法和初始学习曲线上的差异。然而&#xff0c;最终的决定性因素是重要项目的易用性。 “Rust 与 Go”争论 Rust vs Go 是一个不断出现的话题&#xff0c;并且已经有很多关于它的文章。部分原因是开发人员正在寻找信息来帮助他们决定下…

数据分析在企业培训系统中的关键作用与优势

数据分析在企业培训系统中扮演着关键的角色&#xff0c;它不仅能够帮助企业更好地了解员工培训的需求和效果&#xff0c;还能够提供有针对性的教育方案和提高培训效果。 数据分析可以帮助企业准确把握员工培训需求。通过收集和分析员工的培训需求调查和反馈信息&#xff0c;企…

浅谈WPF之利用RichTextBox实现富文本编辑器

在实际应用中&#xff0c;富文本随处可见&#xff0c;如留言板&#xff0c;聊天软件&#xff0c;文档编辑&#xff0c;特定格式内容等&#xff0c;在WPF开发中&#xff0c;如何实现富文本编辑呢&#xff1f;本文以一个简单的小例子&#xff0c;简述如何通过RichTextBox实现富文…

JavaCV之rtmp推流(FLV和M3U8)

JavaCV与FFmpeg FFmpeg是一款开源的多媒体处理工具集&#xff0c;它包含了一系列用于处理音频、视频、字幕等多媒体数据的库和工具。 JavaCV集成了FFmpeg库&#xff0c;使得Java开发者可以使用FFmpeg的功能&#xff0c;比如视频解码、编码、格式转换等。 除了FFmpeg&#xff…

01_02_mysql07_mysql8.0新特性

1.MySQL8新特性概述 MySQL从5.7版本直接跳跃发布了8.0版本 &#xff0c;可见这是一个令人兴奋的里程碑版本。MySQL 8版本在功能上做了显著的改进与增强&#xff0c;开发者对MySQL的源代码进行了重构&#xff0c;最突出的一点是多MySQL Optimizer优化器进行了改进。不仅在速度上…

在VsCode中通过Cookie登录LeetCode

在vscode中配置好leetcode之后&#xff0c;一般最常用的就是通过cookie登录leetcode ; 首先点击sign in &#xff0c; 然后选择最下面的 &#xff0c; LeetCode Cookie ! 然后输入username(也就是你的lc用户名) 或者 你leetcode绑定的邮箱 ; 输入完成之后 ; 就是要你输入你的l…

【Java EE初阶二十二】https的简单理解

1. 初识https 当前网络上,主要都是 HTTPS 了,很少能见到 HTTP.实际上 HTTPS 也是基于 HTTP.只不过 HTTPS 在 HTTP 的基础之上, 引入了"加密"机制&#xff1b;引入 HTTPS 防止你的数据被黑客篡改 &#xff1b; HTTPS 就是一个重要的保护措施.之所以能够安全, 最关键的…

C#知识点-14(索引器、foreach的循环原理、泛型、委托)

索引器 概念&#xff1a;索引器能够让我们的对象&#xff0c;以索引&#xff08;下标&#xff09;的形式&#xff0c;便捷地访问类中的集合&#xff08;数组、泛型集合、键值对&#xff09; 应用场景&#xff1a; 1、能够便捷地访问类中的集合 2、索引的数据类型、个数、顺序不…

从源码解析Kruise(K8S)原地升级原理

从源码解析Kruise原地升级原理 本文从源码的角度分析 Kruise 原地升级相关功能的实现。 本篇Kruise版本为v1.5.2。 Kruise项目地址: https://github.com/openkruise/kruise 更多云原生、K8S相关文章请点击【专栏】查看&#xff01; 原地升级的概念 当我们使用deployment等Wor…

vue:find查找函数实际开发的使用

find的作用&#xff1a; find 方法主要是查找数组中的属性&#xff0c;会遍历数组&#xff0c;对每一个元素执行提供的函数&#xff0c;直到找到使该函数返回 true 的元素。然后返回该元素的值。如果没有元素满足测试函数&#xff0c;则返回 undefined。 基础使用&#xff1a…

摄像头相机标定

相机标定 相机标定的目的有两个。 第一&#xff0c;要还原摄像头成像的物体在真实世界的位置就需要知道世界中的物体到计算机图像平面是如何变换的&#xff0c;相机标定的目的之一就是为了搞清楚这种变换关系&#xff0c;求解内外参数矩阵。 第二&#xff0c;摄像机的透视投影有…

linux下开发,stm32和arduino,我该何去何从?

linux下开发&#xff0c;stm32和arduino&#xff0c;我该何去何从&#xff1f; 在开始前我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「stm3的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共…

zemax消畸变目镜

用三胶合透镜代替了RKE的消色差双胶合镜&#xff0c;减少了横向色差和畸变 入瞳直径4mm波长0.51、0.56、0.61半视场22.5焦距28mm 镜头参数&#xff1a; 成像效果&#xff1a; 畸变效果&#xff1a; 点列图&#xff1a;

S281 LoRa网关助力智慧城市建设的智能交通管理

S281 LoRa网关作为智慧城市建设中的重要组成部分&#xff0c;发挥着关键的作用&#xff0c;特别是在智能交通管理方面。通过连接各类传感器设备和物联网终端&#xff0c;S281 LoRa网关实现了对城市交通系统的远程监控、智能调度和信息化管理&#xff0c;为城市交通管理部门提供…