CMU和ETH联合研发了一个名为 「敏捷但安全」的新框架,为四足机器人在复杂环境中实现高速运动提供了解决方案

news2024/12/23 4:53:34

在高速机器人运动领域,实现同时兼顾速度和安全一直是一大挑战。但现在,卡内基梅隆大学(CMU)和苏黎世联邦理工学院(ETH)的研究团队带来了突破性进展。他们开发的新型四足机器人算法,不仅能在复杂环境中高速行进,还能巧妙避开障碍,真正做到了「敏捷而安全」。

在这里插入图片描述

论文地址: https://arxiv.org/pdf/2401.17583.pdf

在 ABS 的加持下,机器狗在各种场景下都展现出了惊艳的高速避障能力:

障碍重重的狭窄走廊:

在这里插入图片描述

凌乱的室内场景:
在这里插入图片描述

无论是草地还是户外,静态或动态障碍,机器狗都从容应对:

在这里插入图片描述

遇见婴儿车,机器狗灵巧躲闪开:

在这里插入图片描述

警告牌、箱子、椅子也都不在话下:

在这里插入图片描述

对于突然出现的垫子和人脚,也能轻松绕过:

在这里插入图片描述

机器狗甚至还可以玩老鹰捉小鸡:

在这里插入图片描述

ABS 突破性技术:

RL+ Learning model-free Reach-Avoid value

ABS 采用了一种双策略(Dual Policy)设置,包括一个「敏捷策略」(Agile Policy)和一个「恢复策略」(Recovery Policy)。敏捷策略让机器人在障碍环境中快速移动,而一旦 Reach-Avoid Value Estimation 检测到潜在危险(比如突然出现的婴儿车),恢复策略就会介入,确保机器人安全。

在这里插入图片描述

创新点 1:怎么训练一个敏捷策略 Agile Policy?

敏捷策略的创新之处在于,与以往简单地追踪速度指令不同,它采用目标达成(position trakcing)的形式来最大化机器人的敏捷性。这一策略训练机器人发展出感知运动技能,以在没有碰撞的情况下达到指定目标。通过追求基座高速度的奖励条件,机器人自然学会在避免碰撞的同时实现最大敏捷性。这种方法克服了传统速度追踪(velocity tracking)策略在复杂环境中可能的保守限制,有效提高了机器人在障碍环境中的速度和安全性。Agile Policy 在实机测试中极速达到了 3.1m/s

在这里插入图片描述

创新点 2:学习 Policy-conditioned reach-avoid value

「达防」(Reach-Avoid, RA)值学习的创新之处在于,它采用了无模型的方式学习,与传统的基于模型的可达性分析方法不同,更适合无模型的强化学习策略。此方法不是学习全局 RA 值,而是使其依赖于特定策略,这样可以更好地预测敏捷策略的失败。通过简化的观测集,RA 值网络可以有效地概括并预测安全风险。RA 值被用于指导恢复策略,帮助机器人优化运动以避免碰撞,从而实现在保证安全的同时提高敏捷性的目标。

下图展示了针对特定障碍物集合学习到的 RA(达防)值。随着机器人速度的变化,RA 值的分布景观也相应变化。RA 值的符号合理地指示了敏捷策略的安全性。换句话说,这张图通过不同的 RA 值展示了机器人在不同速度下,面对特定障碍物时的安全风险程度。RA 值的高低变化反映了机器人在不同状态下执行敏捷策略时可能遇到的安全风险。

在这里插入图片描述

创新点 3:用 Reach-Avoid Value 和恢复策略来拯救机器人

恢复策略的创新之处在于,它能使四足机器人快速追踪线速度和角速度指令,作为一种备用保护策略。与敏捷策略不同,恢复策略的观测空间专注于追踪线速度和角速度命令,不需要外部感知信息。恢复策略的任务奖励专注于线性速度追踪、角速度追踪、保持存活和保持姿势,以便平滑切换回敏捷策略。这种策略的训练同样在仿真环境中进行,但有特定的域随机化和课程设置,以更好地适应可能触发恢复策略的状态。这种方法为四足机器人提供了在高速运动中快速应对潜在失败的能力。

在这里插入图片描述

下图展示了当恢复策略在两个特定情况(I 和 II)下被触发时,RA(达防)值景观的可视化展示。这些可视化展示是在 vx(沿 x 轴的速度)与 ωz(绕 z 轴的角速度)平面以及 vx 与 vy(沿 y 轴的速度)平面上进行的。图中显示了搜索前的初始旋转状态(即机器人基座当前的旋转状态)和通过搜索得到的命令。简单来说,这些图表展示了在特定条件下,通过恢复策略搜索得到的最佳运动指令,以及这些指令如何影响 RA 值,从而反映机器人在不同运动状态下的安全性。

鲁棒性测试

作者在「12kg 负载 / 篮球撞击 / 脚踢 / 雪地」的四个场景下测试了 ABS 框架的鲁棒性,机器狗都从容应对:

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1453115.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

程序的控制结构详解

程序的控制结构 结构化程序设计方法的基础 在计算机刚出现的早期,它的价格昂贵、内存很小、速度慢。程序员为了在很小的内存中解决大量的科学计算问题,并为了节省昂贵的CPU机时费,不得不使用巧妙的手段和技术,手工编写各种高效的…

吴恩达机器学习全课程笔记第一篇

目录 前言 P1 - P8 监督学习 ​无监督学习 P9-P14 线性回归模型 成本(代价)函数 P15-P20 梯度下降 P21-P24 多类特征 向量化 多元线性回归的梯度下降 P25-P30 特征缩放 检查梯度下降是否收敛 学习率的选择 特征工程 多项式回归 前言…

【力扣hot100】刷题笔记Day5

前言 回学校了,荒废了半天之后打算奋发图强猛猛刷题,找实习!赚钱!! 560. 和为 K 的子数组 - 力扣(LeetCode) 前缀法 哈希表 这个题解解释比官方清晰,截个图方便看,另一…

【Java】文件操作与IO

文件操作与IO Java中操作文件针对文件系统的操作File类概述字段构造方法方法及示例 文件内容的读写 —— 数据流Java提供的 “流” API文件流读写文件内容InputStream 示例读文件示例1:将文件完全读完的两种方式示例二:读取汉字 写文件谈谈 OutputStream…

Practical User Research for Enterprise UX

2.1 Why It’s Hard to Get Support for Research in Enterprises 2.1.1 Time and Budget Instead of answering the question “What dowe gain if we do this research?”, ask instead “What do we stand to lose if we don’t do the research?” 2.1.2 Legacy Thinkin…

HMI界面:感官与体验俱佳的智能家居界面分享

Hello,我是大千UI工场,本期分享HMI人机交互界面在智能家居领域的案例,关注大千,学习N多UI干货,有设计需求,可以联络。 设计感官和体验俱佳智能家居的UI界面时,可以考虑以下几个方面:…

算法中关于数学的题目练习

算法中关于数学的题目练习 1、买不到的数目题目信息思路题解 2、蚂蚁感冒题目信息思路题解 3、饮料换购题目信息思路题解 1、买不到的数目 题目信息 思路 数学结论(证明略): p、q为正整数且互质,不能由p、q凑出来的最大的数为(p…

DNS服务正反解析

1.正向解析 1.配置基本 1.1防火墙配置 二者都要关闭 setenforce 0 systemctl stop firewalld #关闭防火墙 yum install bind -y #下载bind软件 客户端可以不用下 1.2服务端配置静态ip, ip a 查看网卡 nmcli c modify ens33 ipv4.method manual ipv4.addresses …

使用PaddleNLP UIE模型提取上市公司PDF公告关键信息

项目地址:使用PaddleNLP UIE模型抽取PDF版上市公司公告 - 飞桨AI Studio星河社区 (baidu.com) 背景介绍 本项目将演示如何通过PDFPlumber库和PaddleNLP UIE模型,抽取公告中的相关信息。本次任务的PDF内容是破产清算的相关公告,目标是获取受理…

第三百五十回

文章目录 1. 概要介绍2. 获取方法2.1 获取语言2.2 获取地址 3.示例代码3. 内容总结 我们在上一章回中介绍了"给geolocator插件提交问题"相关的内容,本章回中将介绍如何获取系统语言.闲话休提,让我们一起Talk Flutter吧。 1. 概要介绍 我们在本…

机试复习-4

1.string类 string类型和数值的转换 ※数值→字符串 to_string函数 //具体做法 int i1234; string gto_string(i);//这样就转成字符串1234了 //下面就是字符串转为数字&#xff0c;类似下面还有stof,stoi,stod string d "1289347647"; int j stoi(d); cout <…

Halcon 相机标定

文章目录 算子单相机标定单相机标定畸变的矫正 算子 gen_caltab 生成标定文件 gen_caltab(::XNum,YNum,MarkDist,DiameterRatio,CalTabDescrFile,CalTabPSFile :) 算子来制作一个标定板XNum 每行黑色标志圆点的数量。YNum 每列黑色标志圆点的数…

RAG近期发展综述

RAG简介 RAG全称为检索增强生成技术&#xff0c;其主要可以分为三部分&#xff0c;索引&#xff08;构建&#xff09;、检索以及生成&#xff0c;各个部分又可以进一步细分。 索引 索引阶段主要是构建知识库的过程&#xff0c;这里的知识库是泛指&#xff0c;包括了向量数据…

JAVA之HashMap详解

HashMap 1. 设计原理 HashMap 基于哈希表的 Map 接口实现&#xff0c;是以 key-value 存储形式存在&#xff0c;即主要用来存放键值对。HashMap 的实现不是同步的&#xff0c;这意味着它不是线程安全的。它的 key、value 都可以为 null&#xff0c;此外&#xff0c;HashMap 中…

sql语句学习(一)--查询

【有道云笔记】基本sql语句2—查询基础 数据库表结构 DROP TABLE IF EXISTS class; CREATE TABLE class (id int(11) NOT NULL AUTO_INCREMENT,class_num varchar(11) CHARACTER SET utf8mb4 COLLATE utf8mb4_bin NOT NULL COMMENT 班级号,class_name varchar(255) CHARACTE…

飞天使-k8s知识点21-kubernetes实操6-daemonset

文章目录 daemonsetservice endpoint pod 之间的关系service基于Service访问外部服务 daemonset DaemonSet 是 Kubernetes 中的一种资源对象&#xff0c;它确保在集群中的每个节点上都运行一个 Pod 的副本。这对于运行集群级别的守护进程&#xff08;例如日志收集器、监控代理…

Leetcode - 周赛384

目录 一&#xff0c;3033. 修改矩阵 二&#xff0c;3035. 回文字符串的最大数量 三&#xff0c;3036. 匹配模式数组的子数组数目 II 一&#xff0c;3033. 修改矩阵 这道题直接暴力求解&#xff0c;先算出每一列的最大值&#xff0c;再将所有为-1的区域替换成该列的最大值&am…

mysql 2-17

UNION关键字和UNION ALL 自然连接 USING使用 函数 单行函数 基本函数 三角函数 指数和对数 进制间的转换 字符串函数 时间和日期函数 计算日期和时间的函数 日期的格式化和解析 流程控制函数

输入输出自定义映射矩阵(数据结构树)

输出自定义FC其它算法实现,可以参考下面文章: https://rxxw-control.blog.csdn.net/article/details/125994252https://rxxw-control.blog.csdn.net/article/details/125994252下面我们看下我们的控制要求。在学习本篇博客之前大家可以熟悉下数据结构图的概念和存储知识,链…

【复合多尺度熵与特征提取】一文看懂“复合多尺度熵”——复合多尺度样本熵、模糊熵、排列熵、包络熵、功率谱熵、能量熵、奇异谱熵及其MATLAB实现

在上一篇文章中&#xff0c;我们讲了多尺度熵的原理及MATLAB实现。 本篇要讲的是多尺度熵的一个改进特征提取方法——复合多尺度熵&#xff08;Composite Multiscale Entropy, CMSE&#xff09;。复合多尺度熵方法不仅继承了多尺度熵在揭示时间序列多尺度复杂性方面的优势&…