在 Android 上部署自定义 YOLOv8 教程

news2024/12/23 23:10:45

在本教程中,我将向您展示如何在 Android 设备上使用自定义数据集部署 YOLOv8。想要了解如何在 Android 设备上使用您自己的数据集部署 YOLOv8?本文将展示如何操作。

Android 上的 自定义 YOLOv8 🔥 ⚡️ 结果显示标题

对从 GoPro 流式传输到移动设备的运动镜头使用 YOLOv8 对象检测可以提供有关场景中对象的宝贵信息,包括位置和类型。这在捕捉远足路线的镜头时特别有用,有助于识别潜在的障碍物或危险以及感兴趣的物体。

YOLOv8🔥 参加雪地自行车比赛🚴❄️🌨🧊

在需要快速准确的物体检测的情况下,手机上的 YOLOv8 应用程序必不可少。 YOLOv8是一种基于深度学习的物体检测模型,可以快速准确地检测图像或视频中的物体,并且可以在移动设备上随时随地使用。

MotoGP 中的 YOLOv8🔥 🏍️🏰标题

为了在 Android 设备上部署带有自定义数据集的 YOLOv8,我们需要训练模型,将其转换为 TensorFlow Lite 或 ONNX 等格式,并将其包含在应用程序的资源文件夹中。然后,使用Android Studio创建项目、添加依赖、加载和解析模型、加载图像数据。执行模型推理,解析输出,并在图像上绘制边界框以显示检测到的对象。最后,在 Android 设备上安装并运行该应用程序。然而,优化移动设备的模型并解决压缩和加速等性能问题对于实际应用非常重要。

🔥第 0 步——理解 ncnn 的终极指南

ncnn是一款专为手机优化的开源高性能神经网络前向计算框架。从设计之初,ncnn就深入考虑了移动端的部署和使用,无第三方依赖,跨平台,且移动端的CPU速度比所有已知的开源框架都要快。基于此ncnn,开发者可以轻松地将深度学习算法移植到手机上高效执行,开发人工智能APP,让AI触手可及。

步骤 1 — 使用自定义数据集训练 YOLOv8
  • 克隆 Git 存储库并安装 YOLOv8
  • 使用预训练权重进行推理
  • 数据准备和格式转换
  • 运行训练过程
  • 将权重转换为 ONNX 格式
  • 将权重转换为 NCNN 格式

步骤2 — 在 Android Studio 上构建并运行

  • 下载 ncnn-android-yolov8
  • 下载ncnn
  • 下载 opencv-mobile
  • 使用 Android Studio 打开 ncnn-android-yolov8
  • 将 NCNN 格式权重放入文件夹中
  • 修改yolo.cpp

🔥第 1 步 —使用自定义数据集训练 YOLOv8

⭐克隆 Git 存储库并安装 YOLOv8

YOLOv8 发布了一个名为 的软件包ultralytics,可以使用下面提到的命令安装它。

$ mkdir yolov8
$ cd yolov8
$ git clone https://github.com/ultralytics/ultralytics
$ pip install -qe ultralytics
$ cd ultralytics
⭐使用预先训练的权重进行推理

要使用 YOLOv8 的预训练权重对所选视频或图像执行对象检测,可以在终端中执行下面提供的命令。

# image
$ yolo task=detect mode=predict model=yolov8m.pt source="XXX.png"


# video
$ yolo task=detect mode=predict model=yolov8m.pt source="XXX.mp4"

如果执行成功,结果将保存在文件夹中YOLOv8/ultralytics/runs/detect/exp/

⭐数据​​准备和格式转换

访问 Kaggle 并下载微控制器检测数据集。

要创建一个名为 的文本文件chip.yaml并将其放置在文件夹中YOLOv8/ultralytics/,请使用以下命令并将所需的内容添加到该文件中。

train: ../datasets/images/train/
val:   ../datasets/images/test/
# number of classes
nc: 4
# class names
names: ['Arduino Nano', 'ESP8266', 'Raspberry Pi 3', 'Heltec ESP32 Lora']

训练期间的数据结构如下表所示。

将文件夹下的.xml移动Microcontroller Detection/images/train/到文件夹中Microcontroller Detection/images/train_xml/

将文件夹下的.xml移动Microcontroller Detection/images/test/到文件夹中Microcontroller Detection/images/test_xml/

将文件夹上传Microcontroller Detection/images/train/到文件夹中YOLOv8/datasets/images/

将文件夹上传Microcontroller Detection/images/test/到文件夹中YOLOv8/datasets/images/

要使用该数据集训练 YOLOv8 目标检测模型,需要将格式从 .xml 转换为 .txt。

$ cd ..
$ git clone  https://github.com/Isabek/XmlToTxt
$ cd XmlToTxt
$ pip install -r requirements.txt

YOLOv8/XmlToTxt/classes.txt根据您的自定义数据集进行修改。

Arduino_Nano 
ESP8266 
Raspberry_Pi_3 
Heltec_ESP32_Lora

将文件夹上传Microcontroller Detection/images/train_xml/到文件夹中YOLOv8/XmlToTxt/

将文件夹上传Microcontroller Detection/images/test_xml/到文件夹中YOLOv8/XmlToTxt/

要将文件从 .xml 格式转换为 .txt 格式,请在终端中运行以下命令。

# 记得将classes.txt中的文本更改为您自己的类别
# 将要转换的xml文件放入xml文件夹中
$ python xmltotxt.py -xml train_xml -out train 
$ python xmltotxt.py -xml test_xml -out test

将文件夹移动YOLOv8/XmlToTxt/train/YOLOv8/datasets/labels/.

将文件夹移动YOLOv8/XmlToTxt/test/YOLOv8/datasets/labels/.

⭐运行训练过程

现在一切都已设置完毕,是时候运行训练过程了。

$ yolo task=detect \
       mode=train \
       model=yolov8n.pt \
       data=./chip.yaml \
       epochs=30 \30 \
       imgsz=416

训练过程的持续时间可能会因硬件配置而异,可能需要几分钟甚至更长的时间。当训练过程运行时,输出日志将显示类似于以下内容的消息。

0/9        0G    0.1184    0.0347   0.03127        47       640:   4%|▎         | 3/85 [01:08<30:00, 21.95s/it]

完成训练过程后,生成的模型ultralytics/runs/train/exp/weights/best.pt现在可以进行预测了!

$ yolo task=detect \
       mode=predict \
       model=/runs/train/exp/weights/best.pt \
       conf=0.25 \
       source='XXX.jpg'
⭐将权重转换为 ONNX 格式

修改ultralytics/ultralytics/nn/modules.py如下内容。

class C2f(nn.Module):
    # CSP Bottleneck with 2 convolutions
    def __init__(self, c1, c2, n=1, shortcut=False, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        self.c = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, 2 * self.c, 1, 1)
        self.cv2 = Conv((2 + n) * self.c, c2, 1)  # optional act=FReLU(c2)
        self.m = nn.ModuleList(Bottleneck(self.c, self.c, shortcut, g, k=((3, 3), (3, 3)), e=1.0) for _ in range(n))

    def forward(self, x):
        # y = list(self.cv1(x).split((self.c, self.c), 1))
        # y.extend(m(y[-1]) for m in self.m)
        # return self.cv2(torch.cat(y, 1))

        print("ook")
        x = self.cv1(x)
        x = [x, x[:, self.c:, ...]]
        x.extend(m(x[-1]) for m in self.m)
        x.pop(1)
        return self.cv2(torch.cat(x, 1))
def forward(self, x):
        shape = x[0].shape  # BCHW
        for i in range(self.nl):
            x[i] = torch.cat((self.cv2[i](x[i]), self.cv3[i](x[i])), 1)
        if self.training:
            return x
        elif self.dynamic or self.shape != shape:
            self.anchors, self.strides = (x.transpose(0, 1) for x in make_anchors(x, self.stride, 0.5))
            self.shape = shape
        
        # box, cls = torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).split((self.reg_max * 4, self.nc), 1)
        # dbox = dist2bbox(self.dfl(box), self.anchors.unsqueeze(0), xywh=True, dim=1) * self.strides
        # y = torch.cat((dbox, cls.sigmoid()), 1)
        # return y if self.export else (y, x)

        print("ook")
        return torch.cat([xi.view(shape[0], self.no, -1) for xi in x], 2).permute(0, 2, 1)

以下命令用于将best.pt格式中的权重转换为 ONNX 格式,并将结果文件保存为best.onnx.

$yolo task=detect mode=export model=runs/detect/train4/weights/best.pt 
format=onnx simplify=True opset=13 imgsz=416

🔥第 2 步 — 在 Android Studio 上构建并运行

下载 ncnn-android-yolo v8

下载ncnn-android-yolov8到您的桌面

⭐下载ncnn

下载ncnn-YYYYMMDD-android-vulkan.zip

提取ncnn-YYYYMMDD-android-vulkan.zipapp/src/main/jni/

ncnn_DIR路径更改为您的路径app/src/main/jni/CMakeLists.txt

⭐下载opencv-mobile

下载opencv-mobile-XYZ-android.zip

提取opencv-mobile-XYZ-android.zipapp/src/main/jni/

更改OpenCV_DIR路径在app/src/main/jni/CMakeLists.txt

⭐使用Android Studio打开ncnn-android-yolov8

💡 如果构建过程中出现问题,应该是SDK Tools中NDK和CMake的兼容性问题。修改方法如下

👉ctrl +alt +s打开设置,安装21.3.6528147版本NDK

👉 安装3.10.2.4988404版本CMake

👉 添加CMake路径local.properties

Sync project with Gradle Files👉 按右上角的按钮。

⭐将 NCNN 格式权重放入文件夹中

放置best.binbest.param放入文件夹中app\src\main\assets\

⭐修改yolo.cpp

根据您的自定义数据集修改app\src\main\jni\yolo.cpp's 。num_class

根据您的自定义数据集修改app\src\main\jni\yolo.cpp's 。class_names

根据你的app\src\main\jni\yolo.cpp情况修改。layer_namebest.param

修改app\src\main\jni\yolo.cppweights name

按RUN按钮,程序执行成功!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1452189.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

BulingBuling - 《大家来写作》 [ Everybody Writes ]

大家来写作 创造令人难以置信的好内容的必备指南 作者&#xff1a;安-汉德莱 Everybody Writes Your Go-To Guide to Creating Ridiculously Good Content By Ann Handley 内容提要 《Everybody Writes》&#xff08;2014年&#xff09;为你提供了关于如何创造优秀内容的宝…

【Linux内核】从0开始入门Linux Kernel源码

&#x1f308; 博客个人主页&#xff1a;Chris在Coding &#x1f3a5; 本文所属专栏&#xff1a;[Linux内核] ❤️ 前置学习专栏&#xff1a;[Linux学习]从0到1 ⏰ 我们仍在旅途 ​ 目录 …

电商小程序09活动管理

目录 1 创建数据源2 详情页面搭建3 首页轮播图搭建4 最终的效果5 总结 商家在日常运营中经常需要通过活动来进行推广和促销&#xff0c;我们在小程序中也需要考虑这部分的业务。本节我们讲解一下微搭低代码中如何实现活动的功能。 1 创建数据源 展示信息需要将信息存储到数据源…

css篇---移动端适配的方案有哪几种

移动端适配 移动端适配是指同一个页面可以在不同的移动端设备上都有合理的布局。主流实现的方案有 响应式布局通过rem或者vw,vh 等实现不同设备有相同的比例而实现适配 首先需要了解viewport 【视口】 视口代表了一个可看见的多边形区域&#xff08;通常来说是矩形&#xff0…

元宇宙专题:元宇宙概念娱乐应用场景案例研究报告 - 体验驱动篇

今天分享的是元宇宙系列深度研究报告&#xff1a;《元宇宙专题&#xff1a;元宇宙概念娱乐应用场景案例研究报告 - 体验驱动篇》。 &#xff08;报告出品方&#xff1a;艾瑞咨询&#xff09; 报告共计&#xff1a;51页 避免刻舟求剑地探索元宇宙概念产品 对于任何一个宏大而…

<网络安全>《35 网络攻防专业课<第一课 - 网络攻防准备>》

1 主要内容 认识黑客 认识端口 常见术语与命令 网络攻击流程 VMWare虚拟环境靶机搭建 2 认识黑客 2.1 白帽、灰帽和黑帽黑客 白帽黑客是指有能力破坏电脑安全但不具恶意目的黑客。 灰帽黑客是指对于伦理和法律态度不明的黑客。 黑帽黑客经常用于区别于一般&#xff08;正面…

阿里云香港服务器详解_CN2线路测试_BGP多线精品测试

阿里云香港服务器中国香港数据中心网络线路类型BGP多线精品&#xff0c;中国电信CN2高速网络高质量、大规格BGP带宽&#xff0c;运营商精品公网直连中国内地&#xff0c;时延更低&#xff0c;优化海外回中国内地流量的公网线路&#xff0c;可以提高国际业务访问质量。阿里云服务…

开年王炸!OpenAI发布文本转视频模型Sora,有亿点震撼!

大家好&#xff0c;我是木易&#xff0c;一个持续关注AI领域的互联网技术产品经理&#xff0c;国内Top2本科&#xff0c;美国Top10 CS研究生&#xff0c;MBA。我坚信AI是普通人变强的“外挂”&#xff0c;所以创建了“AI信息Gap”这个公众号&#xff0c;专注于分享AI全维度知识…

OCP的operator——(4)用户任务:使用Operator创建etcd集群

文章目录 环境在namespace中安装Operator先决条件使用Web console从OperatorHub安装删除 使用CLI从OperatorHub安装从已安装的Operator创建应用使用Operator创建etcd集群报错从web console debug从命令行debug分析 参考 环境 RHEL 9.3Red Hat OpenShift Local 2.32 在namespa…

机器学习面试:请你谈谈生成模型和判别模型的区别?

生成模型:由数据学习联合概率密度分布P(XY)&#xff0c;然后求出条件概率分布P(YIX)作为预测的模型&#xff0c;即生成模型:P(Y|X) P(X,Y)/ P(X)(贝叶斯概率)。基本思想是首先建立样本的联合概率概率密度模型P(X,Y)然后再得到后验概率P(Y|X)&#xff0c;再利用它进行分类。典型…

数学实验第三版(主编:李继成 赵小艳)课后练习答案(十二)(4)

实验十二&#xff1a;微分方程模型 练习四 1.如图12.12所示,有一只猎狗在B点位置发现了一只兔子在正东北方距离它200m的地方0处,此时兔子开始以8m/s的速度向正西北方距离为120m的洞口A全速跑去,假设猎狗在追赶兔子的时候始终朝着兔子的方向全速奔跑,按要求完成下面的实验: (1…

BulingBuling - 《自律就是自由》 [ Discipline Equals Freedom ]

自律就是自由 实战手册 作者&#xff1a;Jocko Willink Discipline Equals Freedom Field Manual By Jocko Willink 简介 《自律就是自由》&#xff08;2020年&#xff09;是一本关于自律艺术的实战手册。它揭示了你需要做什么来满足你的全部潜能--以及为什么自律能让你自…

【HarmonyOS】hdc 环境变量设置

hdc&#xff08;HarmonyOS Device Connector&#xff09;是 HarmonyOS 为开发人员提供的用于调试的命令行工具&#xff0c;通过该工具可以在 windows/linux/mac 系统上与真实设备或者模拟器进行交互。 hdc 工具通过 HarmonyOS SDK 获取&#xff0c;存放于 /Huawei/Sdk/openhar…

英文论文(sci)解读复现【NO.18】基于DS-YOLOv8的目标检测方法用于遥感图像

此前出了目标检测算法改进专栏&#xff0c;但是对于应用于什么场景&#xff0c;需要什么改进方法对应与自己的应用场景有效果&#xff0c;并且多少改进点能发什么水平的文章&#xff0c;为解决大家的困惑&#xff0c;此系列文章旨在给大家解读发表高水平学术期刊中的 SCI论文&a…

机器学习:k近邻算法(Python)

一、k近邻算法的定义 二、KD树结点信息封装 kdtree_node.py class KDTreeNode:"""KD树结点信息封装"""def __init__(self, instance_nodeNone, instance_labelNone, instance_idxNone,split_featureNone, left_childNone, right_childNone, kd…

对待不合理需求,前端工程师如何优雅的say no!

曾经有位老板&#xff0c; 每次给前端提需求&#xff0c;前端都说实现不了&#xff0c;后来他搜索了一下&#xff0c;发现网上都有答案。他就在招聘要求上加了条&#xff1a;麻烦你在说不行的时候&#xff0c;搜索一下。 上面是一个段子&#xff0c;说的有点极端了&#xff0c;…

简单DP算法(动态规划)

简单DP算法 算法思想例题1、01背包问题题目信息思路题解 2、摘花生题目信息思路题解 3、最长上升子序列题目信息思路题解 题目练习1、地宫取宝题目信息思路题解 2、波动数列题目信息思路题解 算法思想 从集合角度来分析DP问题 例如求最值、求个数 例题 1、01背包问题 题目…

2.16学习总结

1.邮递员送信&#xff08;dijkstra 不只是从起到到目标点&#xff0c;还要走回去&#xff09; 2.炸铁路(并查集) 3.统计方形&#xff08;数据加强版&#xff09;&#xff08;排列组合&#xff09; 4.滑雪&#xff08;记忆化&#xff09; 5.小车问题&#xff08;数学问题&#x…

高B格可视化大屏设计具备的10大特征

简洁明了&#xff1a; 可视化大屏界面应该尽可能简洁明了&#xff0c;突出重点&#xff0c;避免过多的信息和视觉干扰。同时&#xff0c;需要考虑到用户的视觉效果和易用性&#xff0c;使用户能够迅速地获取所需信息。 数据精准&#xff1a; 可视化大屏界面显示的数据应该准确…

阿里云BGP多线精品EIP香港CN2线路低时延,价格贵

阿里云香港等地域服务器的网络线路类型可以选择BGP&#xff08;多线&#xff09;和 BGP&#xff08;多线&#xff09;精品&#xff0c;普通的BGP多线和精品有什么区别&#xff1f;BGP&#xff08;多线&#xff09;适用于香港本地、香港和海外之间的互联网访问。使用BGP&#xf…