预测模型:MATLAB线性回归

news2025/1/21 12:23:20

1. 线性回归模型的基本原理

  线性回归是统计学中用来预测连续变量之间关系的一种方法。它假设变量之间存在线性关系,可以通过一个或多个自变量(预测变量)来预测因变量(响应变量)的值。基本的线性回归模型可以表示为:
y = β 0 + β 1 x 1 + β 2 x 2 + . . . + β n x n + ϵ y = \beta_0 + \beta_1x_1 + \beta_2x_2 + ... + \beta_nx_n + \epsilon y=β0+β1x1+β2x2+...+βnxn+ϵ
其中, y y y是因变量, x 1 , x 2 , . . . , x n x_1, x_2, ..., x_n x1,x2,...,xn是自变量, β 0 \beta_0 β0是截距项, β 1 , β 2 , . . . , β n \beta_1, \beta_2, ..., \beta_n β1,β2,...,βn是回归系数, ϵ \epsilon ϵ是误差项。

2. MATLAB中线性回归的求解

  MATLAB提供了多种工具和函数来进行线性回归分析,包括fitlm函数用于创建线性回归模型,以及regress函数等。fitlm提供了一个方便的接口来拟合线性模型,自动计算回归系数,并提供了估计的统计信息。

3. 实例分析

  假设我们有一组数据,包含了一家公司的广告支出和相应的销售额。我们想要建立一个模型,预测根据广告支出预测销售额。

数据:

广告支出(万)销售额(万)
1.258
2.175
0.949
1.872
1.565
2.590

使用MATLAB进行线性回归分析:

clc,clear
% 加载数据
X = [1.2, 2.1, 0.9, 1.8, 1.5 , 2.5]; % 广告支出
Y = [58, 75, 49, 72, 65, 90]; % 销售额

% 线性回归分析
mdl = fitlm(X, Y);

disp(mdl)

% 绘制数据点
figure; % 创建一个新的图形窗口
scatter(X, Y, 'filled'); % 绘制散点图
hold on; % 保持图形,以便在同一图形上添加回归线

% 计算回归线
b = mdl.Coefficients.Estimate; % 获取回归系数
refX = min(X):0.01:max(X); % 生成一个参考X值的向量,用于绘制回归线
refY = b(1) + b(2)*refX; % 计算对应的Y值

% 绘制回归线
plot(refX, refY, 'r', 'LineWidth', 2); % 绘制红色的回归线

% 标题和轴标签
title('广告支出与销售额的线性回归分析');
xlabel('广告支出(万)');
ylabel('销售额(万)');

% 显示图例
legend('观测数据', '回归线', 'Location', 'best');

hold off; % 释放图形

4. 求解结果

  在代码中,fitlm函数会输出一个线性模型对象,其中包含了模型的详细统计信息,如回归系数的估计值、 R 2 R^2 R2值(解释变量对响应变量的解释程度)、p值等,可以用来评估模型的质量和预测能力。

具体结果如下:

线性回归图如下:

通过线性回归模型,我们可以预测在不同的广告支出下可能获得的销售额,这对于资源分配和营销策略的制定极为重要。线性回归模型是最简单的预测模型之一,后面还会介绍其他的回归预测模型。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1441357.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Ps:窗口排列

Ps菜单:窗口/排列 Window/Arrange Photoshop 的“窗口/排列” Arrange子菜单中提供了多种方式来组织和查看打开的文档窗口,这在处理多个文档或比较图像时非常有用。 ◆ ◆ ◆ 常用操作方法与技巧 1、同文档双窗口处理法 将同一个图像显示在两个窗口中&…

The Back-And-Forth Method (BFM) for Wasserstein Gradient Flows windows安装

本文记录了BFM算法代码在windows上的安装过程。 算法原网站:https://wasserstein-gradient-flows.netlify.app/ github:https://github.com/wonjunee/wgfBFMcodes 文章目录 FFTWwgfBFMcodesMATLABpython注 FFTW 官网/下载路径:https://ww…

备战蓝桥杯---动态规划(基础2)

本专题主要是介绍几个比较经典的题目: 假设我们令f[i]为前i个的最长不下降子序列,我们会发现难以转移方程很难写(因为我们不知道最后一个数)。 于是,我们令f[i]为以i结尾的最长不下降子序列,这样子我们就可…

Java基础知识练习题

1.对Java源文件进行编译操作的命令是(B) A.Java B.javac C.where is java D.javaw 2.下列命令中,用来运行Java程序的是(A)A.java B. javadoc C. jar D. javac 分析: 对Java源程序进行编译的命令是J…

Django的配置文件setting.py

BASE_DIR 项目路径:默认是已经打开的主项目路径 ​​​​​​​BASE_DIR os.path.dirname(os.path.dirname(os.path.abspath(__file__))) SECRET_KEY 密钥 SECRET_KEY (dh&_fm2hfn9y)35!_6#$a7q%%^onoy#-a8x18r4(6*8f(aniDEBUG 帮助调试,默认…

gcore服务器设置root账号密码登录

这个厂商很奇怪,默认只能用centos用户与公钥登录,但是这样有时候很麻烦。 他默认开启了SELinux,和强制ssh密钥登录。 下面所有操作在root模式下进行 SELinux设置为兼容模式 setenforce 0vi /etc/selinux/config然后将文件中的SELINUXenfo…

JVM之GC垃圾回收

GC垃圾回收 如何判断对象可以回收 引用计数法 如果有对象引用计数加一,没有对象引用,计数减一,如果计数为零,则回收 但是如果存在循环引用,即A对象引用B对象,B对象引用A对象,会造成内存泄漏 可…

Java 学习和实践笔记(3)

安装和配置成功: 运行第一个程序时出现这个错误:javac不是内部或外部命令,也不是可运行的程序或批处理文件。 找到这篇文章看了下:javac 不是内部或外部命令,也不是可运行的程序 或批处理文件。_javac 不是内部或外部…

安卓服务的常见问题,性能优化以及应用场景剖析

一、引言 在安卓开发中,服务(Service)扮演着至关重要的角色,它们在没有用户界面的情况下,为用户提供了长时间的后台任务执行能力。本文将探讨服务常见问题、优化策略、应用场景以及开发过程中应注意的事项。 二、应用场…

IP地址查询的应用与意义

在数字化时代,IP地址已成为连接我们与网络世界的纽带之一。通过IP地址查询,我们可以揭开数字世界的面纱,了解更多有关网站、用户和网络活动的信息。本文将探讨IP地址查询的应用场景、意义以及其在网络安全、个人隐私保护和地理定位服务中的作…

IT行业有哪些证书含金量高呢?

目录 引言: 一、 计算机网络类证书 二、 数据库管理类证书 三、 安全与信息技术管理类证书 四、 编程与开发类证书 五、 数据科学与人工智能类证书 六、结论: 悟已往之不谏,知来者犹可追 …

Netty连接通道中的Channel参数模型

ChannelOption(Channel中的连接参数) ChannelOption.SOBACKLOG ChannelOption.SO_BACKLOG对应的是tcp/ip协议listen函数中的backlog参数,服务端处理客户端连接请求是顺序处理的,所以同一时间只能处理一个客户端连接,多个客户端来的时候&…

机器学习11-前馈神经网络识别手写数字1.0

在这个示例中,使用的神经网络是一个简单的全连接前馈神经网络,也称为多层感知器(Multilayer Perceptron,MLP)。这个神经网络由几个关键组件构成: 1. 输入层 输入层接收输入数据,这里是一个 28x…

Github 2024-02-09 开源项目日报 Top10

根据Github Trendings的统计,今日(2024-02-09统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Python项目4Go项目2Scala项目1PLpgSQL项目1Ruby项目1HTML项目1Solidity项目1Lua项目1 开源个人理财应用 Mayb…

4.5 特效规范与拆分实现及程序的调用原理

一、特效基础流程 落地方案 连入游戏 需求 策划需求,美术需求 需要的SHADER,功能 测试/反馈/修改 效果迭代 满足功能的特效 概念设计 参考图,设计图 二、规范的设计原理与目的 节约沟通成本 保持项目的一致性 工作交接可以更加便捷 降低出错的概率 提升工作效率…

236. 二叉树的最近公共祖先 - 力扣(LeetCode)

题目描述 给定一个二叉树, 找到该树中两个指定节点的最近公共祖先。 百度百科中最近公共祖先的定义为:“对于有根树 T 的两个节点 p、q,最近公共祖先表示为一个节点 x,满足 x 是 p、q 的祖先且 x 的深度尽可能大(一个节点也可以…

【Linux】SystemV IPC

进程间通信 一、SystemV 共享内存1. 共享内存原理2. 系统调用接口(1)创建共享内存(2)形成 key(3)测试接口(4)关联进程(5)取消关联(6)释…

以用户为中心,酷开科技荣获“消费者服务之星”

在企业顺应消费升级的道路中,企业自身不仅要着力强化对于消费者服务意识的提升,并且要树立诚信自律的行业示范带头作用,助力消费环境稳中向好,不断满足人民群众对美好生活的期待。企业的发展需要消费者的认可,酷开科技…

震撼!谷歌推出AI大模型Gemini Ultra,7胜GPT-4!这是AI的新里程碑还是终结者?

谷歌的多模态AI模型Gemini再升级,其中的Ultra版本在基准测试中大放异彩,力压GPT-4! Gemini Ultra,处理文本、代码、图像、音频、视频等模态游刃有余,复杂推理也不在话下。在与GPT-4的较量中,它以7胜1负的…

C#,聚会数(相遇数,Rencontres Number)的算法与源代码

1 相遇数 相遇数(Rencontres Number,partial derangement numbers)是指部分扰动的数量,或与独立对象的r相遇的置换数(即具有固定点的独立对象的置换数)。 看不通。懂的朋友给解释一下哈。 2 源程序 using…