机器学习10-特征缩放

news2025/1/3 3:29:59

特征缩放的目的是确保不同特征的数值范围相近,使得模型在训练过程中更加稳定,加速模型收敛,提高模型性能。具体而言,零均值单位方差的目标有以下几点好处:

1. 均值为零(Zero Mean):通过减去特征的均值,可以使特征分布的中心位于零点。这样做有助于消除不同特征之间的偏差,确保模型不会在某些特征上过度拟合。如果某个特征的均值远离零,模型可能会更关注那些数值较大的特征。

2. 单位方差(Unit Variance):通过除以特征的标准差,可以将特征的尺度统一为相似的范围。这是因为不同特征可能具有不同的数值范围,如果某个特征的值较大,它可能会在模型中占据主导地位,而忽略其他特征。通过保持单位方差,确保了所有特征对模型的贡献相对均衡。

总的来说,零均值和单位方差的特征更容易被模型理解和处理,有助于提高模型的性能和泛化能力。特征缩放通常对那些使用距离度量或梯度下降等优化算法的模型尤为重要,如支持向量机、k最近邻、神经网络等。

单位方差指的是数据的方差被标准化为 1。
在特征缩放中,我们通常使用 StandardScaler 来实现单位方差。StandardScaler 通过减去均值并除以标准差的方式,将数据的分布调整为均值为 0,标准差为 1。

下面是一个简单的例子,演示如何使用 StandardScaler 实现单位方差:

import numpy as np
from sklearn.preprocessing import StandardScaler

# 创建一组示例数据
data = np.array([[1, 2, 3],
                 [4, 5, 6],
                 [7, 8, 9]])

# 初始化 StandardScaler
scaler = StandardScaler()

# 计算均值和标准差,并进行缩放
scaled_data = scaler.fit_transform(data)

# 输出缩放后的数据
print("原始数据:")
print(data)
print("\n缩放后的数据(单位方差):")
print(scaled_data)

结果:

缩放后的数据(单位方差):

[[-1.22474487 -1.22474487 -1.22474487]

[ 0. 0. 0. ]

[ 1.22474487 1.22474487 1.22474487]]

解释:

在这个例子中,我们创建了一个 3x3 的矩阵作为示例数据。然后,使用 StandardScaler 对数据进行缩放。输出中的缩放后数据的每个特征都具有零均值和单位方差。这是通过 fit_transform 方法完成的,该方法计算数据的均值和标准差,并将数据进行相应的缩放。

在实际应用中,特征缩放是机器学习中的一项常见预处理步骤,有助于确保不同特征之间的尺度不同不会影响模型的性能。

这段程序使用了`StandardScaler`类进行数据的标准化,标准化是一种特征缩放的方法。下面是这段程序的数学运算步骤

1. 计算均值(Mean):

对每个特征,计算其在所有样本上的平均值。对于示例数据,每一列的均值分别是

(1 + 4 + 7) / 3, (2 + 5 + 8) / 3, (3 + 6 + 9) / 3

2. 计算标准差(Standard Deviation):

对每个特征,计算其在所有样本上的标准差。标准差是每个数据点与均值的偏差的平方的平均值的平方根。对于示例数据,可以计算每列的标准差。

3. 进行缩放操作:

使用标准化公式进行缩放。对于每个特征,将其减去均值,然后除以标准差。这样可以确保每个特征的均值为0,标准差为1。

对于示例数据,缩放后的值可以通过以下公式计算:

x_{\text{scaled}} = \frac{x - \text{mean}}{\text{std}}

其中, x 是原始数据中的每个数据点, mean 是均值, std 是标准差。

结论:

这样,经过标准化处理后,每个特征的均值为0,标准差为1,即实现了单位方差

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1441070.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

移动应用开发Android 创建第一个Android项目

文章目录 一、创建第一个Android项目1.1 准备好Android Studio1.2 运行程序1.3 程序结构是什么app下的结构res - 子目录(所有图片、布局、字AndroidManifest.xml 有四大组件,程序添加权限声明 Project下的结构 二、开发android时,部分库下载异…

教师题不会怎么搜答案?用这三款神器就够了!!! #笔记#知识分享#职场发展

在大学生的学习过程中,遇到难题和疑惑是常有的事情。然而,随着互联网的普及和技术的发展,搜题和学习软件成为了大学生们解决问题的利器。今天,我将向大家推荐几款备受大学生喜爱的搜题和学习软件,帮助我们更好地应对学…

汽车零部件MES系统解决方案

汽车零部件行业现状 随着全球汽车产业不断升级,汽车零部件市场竞争日趋激烈,从上游的钢铁、塑料、橡胶等生产到下游的主机厂配套制造,均已成为全球各国汽车制造大佬战略目标调整的焦点,其意欲在汽车零部件行业快速开疆扩土&#x…

HARRYPOTTER: FAWKES

攻击机 192.168.223.128 目标机192.168.223.143 主机发现 nmap -sP 192.168.223.0/24 端口扫描 nmap -sV -p- -A 192.168.223.143 开启了21 22 80 2222 9898 五个端口,其中21端口可以匿名FTP登录,好像有点说法,百度搜索一下发现可以用anonymous登录…

NLP_语言模型的雏形 N-Gram 模型

文章目录 N-Gram 模型1.将给定的文本分割成连续的N个词的组合(N-Gram)2.统计每个N-Gram在文本中出现的次数,也就是词频3.为了得到一个词在给定上下文中出现的概率,我们可以利用条件概率公式计算。具体来讲,就是计算给定前N-1个词时&#xff0…

【Git】Windows下通过Docker安装GitLab

私有仓库 前言基本思路拉取镜像创建挂载目录创建容器容器启动成功登录仓库设置中文更改密码人员审核配置邮箱 前言 由于某云存在人数限制,这个其实很好理解,毕竟使用的是云服务器,人家也是要交钱的。把代码完全放在别人的服务器上面&#xf…

【网工】华为设备命令学习(nat网络地址转换)

本次实验通过nat技术实现私网转公网。 实验中 pc1和ar2的基本配置省略&#xff0c;只需要配置基本IP地址就行。主要记录AR3的配置代码。 <Huawei>sy Enter system view, return user view with CtrlZ. [Huawei]int g0/0/0 [Huawei-Giga…

飞天使-k8s知识点13-kubernetes散装知识点2-statefulsetdaemonset

文章目录 RC RS DeploymentStatefulSet有状态服务控制器DaemonSet守护进程与任务job cronjob RC RS Deployment StatefulSet有状态服务控制器 statefulset StatefulSet 是 Kubernetes 1.9 版本引入的一个新的 API 对象&#xff0c;主要用于处理有状态的服务。StatefulSet 与 De…

【原创 附源码】Flutter海外登录--Google登录最详细流程

最近接触了几个海外登录的平台&#xff0c;踩了很多坑&#xff0c;也总结了很多东西&#xff0c;决定记录下来给路过的兄弟坐个参考&#xff0c;也留着以后留着回顾。更新时间为2024年2月8日&#xff0c;后续集成方式可能会有变动&#xff0c;所以目前的集成流程仅供参考&#…

谷歌 DeepMind 联合斯坦福推出了主从式遥操作双臂机器人系统增强版ALOHA 2

谷歌 DeepMind 联合斯坦福推出了 ALOHA 的增强版本 ——ALOHA 2。与一代相比&#xff0c;ALOHA 2 具有更强的性能、人体工程学设计和稳健性&#xff0c;且成本还不到 20 万元人民币。并且&#xff0c;为了加速大规模双手操作的研究&#xff0c;ALOHA 2 相关的所有硬件设计全部开…

Java:内部类、枚举、泛型以及常用API --黑马笔记

内部类 内部类是类中的五大成分之一&#xff08;成员变量、方法、构造器、内部类、代码块&#xff09;&#xff0c;如果一个类定义在另一个类的内部&#xff0c;这个类就是内部类。 当一个类的内部&#xff0c;包含一个完整的事物&#xff0c;且这个事物没有必要单独设计时&a…

利用路由懒加载和CDN分发策略,对Vue项目进行性能优化

目录 一、Vue项目 二、路由懒加载 三、CDN分发策略 四、如何对Vue项目进行性能优化 一、Vue项目 Vue是一种用于构建用户界面的JavaScript框架&#xff0c;它是一种渐进式框架&#xff0c;可以用于构建单页应用&#xff08;SPA&#xff09;和多页应用。Vue具有简单易学、灵…

Spring第二天

一、第三方资源配置管理 说明&#xff1a;以管理DataSource连接池对象为例讲解第三方资源配置管理 1 管理DataSource连接池对象 问题导入 配置数据库连接参数时&#xff0c;注入驱动类名是用driverClassName还是driver&#xff1f; 1.1 管理Druid连接池【重点】 数据库准备…

排序算法---快速排序

原创不易&#xff0c;转载请注明出处。欢迎点赞收藏~ 快速排序是一种常用的排序算法&#xff0c;采用分治的策略来进行排序。它的基本思想是选取一个元素作为基准&#xff08;通常是数组中的第一个元素&#xff09;&#xff0c;然后将数组分割成两部分&#xff0c;其中一部分的…

【代码】Processing笔触手写板笔刷代码合集

代码来源于openprocessing&#xff0c;考虑到国内不是很好访问&#xff0c;我把我找到的比较好的搬运过来&#xff01; 合集 参考&#xff1a;https://openprocessing.org/sketch/793375 https://github.com/SourceOf0-HTML/processing-p5.js/tree/master 这个可以体验6种笔触…

【MySQL】:深入理解并掌握DML和DCL

&#x1f3a5; 屿小夏 &#xff1a; 个人主页 &#x1f525;个人专栏 &#xff1a; MySQL从入门到进阶 &#x1f304; 莫道桑榆晚&#xff0c;为霞尚满天&#xff01; 文章目录 &#x1f4d1;前言一. DML1.1 添加数据1.2 修改数据1.3 删除数据 二. DCL2.1 管理用户2.2 权限控制…

【LeetCode每日一题】525连续数组 303区域和检索(前缀和的基本概念和3个简单案例)

前缀和 // 构造prefix let prefix [0] arr.forEach(num > {prefix.push(prefix.at(-1) num); })如果想要计算某个区间 i 到 j 这个子数组的和时&#xff0c;可以根据 prefix[j1] - prefix[i] 获得。 例题1&#xff1a;303.区域和检索 - 数组不可变 给定一个整数数组 num…

代码随想录算法训练营第45天|139.单词拆分、多重背包、背包问题总结

文章目录 139.单词拆分思路代码 多重背包思路代码 背包问题总结思路代码 139.单词拆分 题目链接&#xff1a;139.单词拆分 文章讲解&#xff1a;代码随想录|139.单词拆分 视频讲解&#xff1a;139.单词拆分 思路 按照双指针思路直接想这题更好理解&#xff0c;用动态规划五部曲…

Django中的SQL注入攻击防御策略

Django中的SQL注入攻击防御策略 SQL注入是一种常见的网络安全威胁&#xff0c;可以导致数据库被非法访问和数据泄露。本文将介绍在Django框架中防止SQL注入攻击的关键方法&#xff0c;包括使用参数化查询、使用ORM、进行输入验证和使用安全的编码实践。 SQL注入是一种利用应用程…

【数据分享】1929-2023年全球站点的逐年平均风速(Shp\Excel\免费获取)

气象数据是在各项研究中都经常使用的数据&#xff0c;气象指标包括气温、风速、降水、能见度等指标&#xff0c;说到气象数据&#xff0c;最详细的气象数据是具体到气象监测站点的数据&#xff01; 有关气象指标的监测站点数据&#xff0c;之前我们分享过1929-2023年全球气象站…