谷歌 DeepMind 联合斯坦福推出了主从式遥操作双臂机器人系统增强版ALOHA 2

news2025/1/5 9:15:04

谷歌 DeepMind 联合斯坦福推出了 ALOHA 的增强版本 ——ALOHA 2。与一代相比,ALOHA 2 具有更强的性能、人体工程学设计和稳健性,且成本还不到 20 万元人民币。并且,为了加速大规模双手操作的研究,ALOHA 2 相关的所有硬件设计全部开源了,并提供了详细的教程,以及具有系统识别功能的 ALOHA 2 MuJoCo 模型。谷歌 DeepMind 放出了相关论文《ALOHA 2: An Enhanced Low-Cost Hardware for Bimanual Teleoperation》。

论文地址:https://aloha-2.github.io/assets/aloha2.pdf

项目主页:https://aloha-2.github.io/

我们先来一睹升级后的 ALOHA 2 能做些什么,比如将不同的玩具放进三个不同的碗里。

玩杂耍,你扔我接。

图片

开可乐瓶并将可乐倒进别的杯子里、开酸奶盒。

图片

给熊猫玩偶戴上美瞳。

图片

更难以想象的是,它还能变身扒手,悄无声息拿走你的钱包,并给你放回去。

图片

简直绝了!ALOHA 2 显著提高了一代 ALOHA 的耐用性,从而能够在更复杂的任务上进行大规模数据收集。

相较于一代,ALOHA 2 都升级了些啥

为支持对复杂操作任务的研究,在 ALOHA 平台上扩大数据收集的规模成为目标之一,包括使用的机器人数量、每台机器人的数据收集小时数以及数据收集的多样性。这一扩展过程改变了相对于第一代 ALOHA 平台的要求和范围。

对于 ALOHA 2,除了在 ALOHA 平台的基础上建设,研究者还针对以下领域寻求进一步改进:

性能和任务范围:增强 ALOHA 性能的关键组件,包括夹持器和控制器,以实现更广泛的操控任务。

用户友好性和人体工学:为了优化大规模数据收集,优先考虑用户体验和舒适度,包括改进用户界面系统的响应性和人体工学设计。

稳健性:增加系统的稳健性,最大限度地减少因诊断和维修造成的停机时间。这就需要简化机械设计,并确保更大规模的机器人队伍在整体上易于维护。

根据上述目标,ALOHA 2 的具体改进如下:

夹持器:研究者为主/从机器人的夹持器设计了新的低摩擦轨道。对于主机器人,这改善了遥操作的人体工学和响应速度。对于随动机器人,这改善了延迟和夹持器的力量输出。此外,他们还升级了手指上的抓胶带材料,以提高耐用性和抓取小物体的能力。

重力补偿:研究者使用现成的组件创建了一个被动的重力补偿机制,与 ALOHA 原有的抓带材料系统相比,这提高了耐用性。

框架:研究者简化了围绕工作单元的框架,同时保持了相机安装点的刚性。这些变化为人机协作者和机器人互动的道具提供了空间。

相机:ALOHA 2 使用更小的英特尔 RealSense D405 相机和定制的 3D 打印相机支架,以减小跟随臂的占地面积,从而减少对操作任务的阻碍。这些摄像头还具有更大的视场角、深度、全局快门和更多的定制功能。

模拟:研究者在 MuJoCo Menagerie 中的 MuJoCo 模型中模拟了 ALOHA 2 机器人的精确规格,从而改进了数据收集、策略学习和模拟评估,以应对具有挑战性的操纵任务。

夹持器

为了使遥控操作更顺畅,并改善人体工程学,本次采用了低摩擦轨道设计,降低了机械复杂性,从而取代了 ALOHA 原有的剪刀导轨式机械手设计。

图片

研究者设计并制造了低摩擦随动机械手,取代了 ALOHA 最初的设计。较低的摩擦减少了领导机器人和跟随机器人夹持器之间感知的延迟,显著改善了远程操作期间的用户体验。

框架

研究者重新设计了支撑框架,并使用 20x20mm 铝型材将其制成。框架为领导机器人和重力补偿系统提供支撑,并为俯视摄像机和虫眼摄像机提供安装点。

在这里插入图片描述

与 ALOHA 相比,本次设计进行了简化,去掉了工作台与遥控操作员相对一侧的垂直框架。增加的空间使数据收集方式更加多样化。例如,人类协作者可以更轻松地站在工作区的对面与机器人互动,从而收集人机互动数据。此外,还可以在工作台前摆放较大的道具,让机器人与之互动。

在这里插入图片描述

模拟

研究者发布了用于 ALOHA 2 工作单元的 MuJoCo Menagerie 模型,它对于远程操作和模拟学习非常有用。

与之前发布的 ALOHA 模型相比,MuJoCo 的物理精度更高、视觉保真度更高,允许快速、直观、可扩展的模拟数据收集。

在这里插入图片描述

MuJoCo 模型渲染。

图片

模拟远程操作任务。

以下为使用 Google Scanned Objects Dataset 与 MuJoCo 模型进行远程操作的示例(1 倍速度):

图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1441053.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

Java:内部类、枚举、泛型以及常用API --黑马笔记

内部类 内部类是类中的五大成分之一(成员变量、方法、构造器、内部类、代码块),如果一个类定义在另一个类的内部,这个类就是内部类。 当一个类的内部,包含一个完整的事物,且这个事物没有必要单独设计时&a…

利用路由懒加载和CDN分发策略,对Vue项目进行性能优化

目录 一、Vue项目 二、路由懒加载 三、CDN分发策略 四、如何对Vue项目进行性能优化 一、Vue项目 Vue是一种用于构建用户界面的JavaScript框架,它是一种渐进式框架,可以用于构建单页应用(SPA)和多页应用。Vue具有简单易学、灵…

Spring第二天

一、第三方资源配置管理 说明:以管理DataSource连接池对象为例讲解第三方资源配置管理 1 管理DataSource连接池对象 问题导入 配置数据库连接参数时,注入驱动类名是用driverClassName还是driver? 1.1 管理Druid连接池【重点】 数据库准备…

排序算法---快速排序

原创不易,转载请注明出处。欢迎点赞收藏~ 快速排序是一种常用的排序算法,采用分治的策略来进行排序。它的基本思想是选取一个元素作为基准(通常是数组中的第一个元素),然后将数组分割成两部分,其中一部分的…

【代码】Processing笔触手写板笔刷代码合集

代码来源于openprocessing,考虑到国内不是很好访问,我把我找到的比较好的搬运过来! 合集 参考:https://openprocessing.org/sketch/793375 https://github.com/SourceOf0-HTML/processing-p5.js/tree/master 这个可以体验6种笔触…

【MySQL】:深入理解并掌握DML和DCL

🎥 屿小夏 : 个人主页 🔥个人专栏 : MySQL从入门到进阶 🌄 莫道桑榆晚,为霞尚满天! 文章目录 📑前言一. DML1.1 添加数据1.2 修改数据1.3 删除数据 二. DCL2.1 管理用户2.2 权限控制…

【LeetCode每日一题】525连续数组 303区域和检索(前缀和的基本概念和3个简单案例)

前缀和 // 构造prefix let prefix [0] arr.forEach(num > {prefix.push(prefix.at(-1) num); })如果想要计算某个区间 i 到 j 这个子数组的和时,可以根据 prefix[j1] - prefix[i] 获得。 例题1:303.区域和检索 - 数组不可变 给定一个整数数组 num…

代码随想录算法训练营第45天|139.单词拆分、多重背包、背包问题总结

文章目录 139.单词拆分思路代码 多重背包思路代码 背包问题总结思路代码 139.单词拆分 题目链接:139.单词拆分 文章讲解:代码随想录|139.单词拆分 视频讲解:139.单词拆分 思路 按照双指针思路直接想这题更好理解,用动态规划五部曲…

Django中的SQL注入攻击防御策略

Django中的SQL注入攻击防御策略 SQL注入是一种常见的网络安全威胁,可以导致数据库被非法访问和数据泄露。本文将介绍在Django框架中防止SQL注入攻击的关键方法,包括使用参数化查询、使用ORM、进行输入验证和使用安全的编码实践。 SQL注入是一种利用应用程…

【数据分享】1929-2023年全球站点的逐年平均风速(Shp\Excel\免费获取)

气象数据是在各项研究中都经常使用的数据,气象指标包括气温、风速、降水、能见度等指标,说到气象数据,最详细的气象数据是具体到气象监测站点的数据! 有关气象指标的监测站点数据,之前我们分享过1929-2023年全球气象站…

信息隐藏研究新动向

信息隐藏有三十年的研究历史,在隐写、数字水印、可逆数据隐藏等方面,国内外发展了一系列新技术与新方法。随着深度学习时代的来临,信息隐藏研究出现了新的变化。一方面,深度学习技术在信息隐藏的发展中发挥了重要作用;…

【RT-DETR进阶实战】利用RT-DETR进行视频划定区域目标统计计数

👑欢迎大家订阅本专栏,一起学习RT-DETR👑 一、本文介绍 Hello,各位读者,最近会给大家发一些进阶实战的讲解,如何利用RT-DETR现有的一些功能进行一些实战, 让我们不仅会改进RT-DETR,也能够利用RT-DETR去做一些简单的小工作,后面我也会将这些功能利用PyQt或者是…

图形系统开发实战课程:进阶篇(上)——2.图形管理类(Graph)

图形开发学院|GraphAnyWhere 课程名称:图形系统开发实战课程:进阶篇(上)课程章节:“图形管理类(Graph)”原文地址:https://graphanywhere.com/graph/advanced/2-2.html 第二章:图形管…

蓝桥杯训练-Huffman树(哈夫曼树)(day14)

一、题目 Huffman树在编码中有着广泛的应用,在这里,只关心Huffman树的构造过程。 给出一列数{pi}{p0,p1,...pn-1},用这列数构造Huffman树的过程如下: 1.找出{pi}中最小的两个数,设为pa和pb,将pa和pb从{pi}中删除,然…

【错误收录】ohpm ERROR: Install failed FetchPackageInfo: @ohos/hypium failed

创建APP的时候出现这样一个错误,是代理没有配置的原因 ohpm.bat install --registry https://repo.harmonyos.com/ohpm/ ohpm WARN: ETIMEDOUT Failed to search for package "ohos/hypium" from "https://repo.harmonyos.com/ohpm/", request…

Elasticsearch: 非结构化的数据搜索

很多大数据组件在快速原型时期都是Java实现,后来因为GC不可控、内存或者向量化等等各种各样的问题换到了C,比如zookeeper->nuraft(https://www.yuque.com/treblez/qksu6c/hu1fuu71hgwanq8o?singleDoc# 《olap/clickhouse keeper 一致性协调服务》)&a…

【Linux】线程池线程安全的单例模式和STL读者写者问题

需要云服务器等云产品来学习Linux的同学可以移步/–>腾讯云<–/官网&#xff0c;轻量型云服务器低至112元/年&#xff0c;优惠多多。&#xff08;联系我有折扣哦&#xff09; 文章目录 1. 线程池1.1 线程池是什么1.2 为什么要有线程池1.3 线程池的应用场景1.4 线程池的任…

异步编程(JS)

前言 想要学习Promise&#xff0c;我们首先要了解异步编程、回调函数、回调地狱三方面知识&#xff1a; 异步编程 异步编程技术使你的程序可以在执行一个可能长期运行的任务的同时继续对其他事件做出反应而不必等待任务完成。 与此同时&#xff0c;你的程序也将在任务完成后显示…

SpringBoot:日志框架

使用日志框架demo&#xff1a;点击查看LearnSpringBoot04logging 点击查看更多的SpringBoot教程 一、springboot日志框架简介 SpringBoot&#xff1a;底层是Spring框架&#xff0c;Spring框架默认是用ICL&#xff1b; SpringBoot选用SLF4j和logback&#xff1b; 统一使用slf4…

Modern C++ 内存篇1 - std::allocator VS pmr

大年三十所写&#xff0c;看到就点个赞吧&#xff01;祝读者们龙年大吉&#xff01;当然有问题欢迎评论指正。 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1. 前言 从今天起我们开始内存相关的话题&#xff0c;内存是个很大的话题&#xff0c;一时不…