干货 | 大模型在图数据分析、推荐系统和生物科学中的综合应用

news2024/11/16 4:22:11

点击蓝字

2e234e4ae66a9795f395ee152e746d3c.jpeg

关注我们

AI TIME欢迎每一位AI爱好者的加入!

图机器学习、推荐系统与大语言模型的融合正成为新的前沿热点。图机器学习通过利用图结构数据,能够有效地捕捉和分析复杂关系和模式。同时,推荐系统正逐步成为我们日常生活的一部分,通过分析用户行为和偏好来提供个性化的内容推荐。当大语言模型与图机器学习、推荐系统结合时,它们能够提供更加深入、准确的洞察,从而在各种应用中提供更加丰富和个性化的用户体验,这为智能化技术的应用开拓了新的视角和可能性。

2023年12月26日,AI TIME “Global AI Lab”系列活动邀请了香港大学数据智能实验室,五位学者分享了他们在大模型领域的最新研究成果和深刻洞见。他们分别从不同的角度和领域出发,不仅涵盖了理论层面的深入探讨,也提出了实用的解决方案,为大模型的发展提供了重要见解和方法论。

01

黄超

Exploring the Power of Large Language Models (LLMs) for Graph Learning

黄超老师首先介绍了图学习的基本知识,图是描述和分析具有关系或交互的实体的通用语言,它专注于分析和处理图形结构的数据。图学习作为一种强大的数据分析工具,在多个领域中发挥着重要作用。在社交网络分析中,它帮助揭示用户间的关系和影响力模式;在推荐系统中,通过理解用户和物品间的复杂互动,能够提高推荐的准确性和个性化;在交通和物流领域,它也被用于优化路线规划和交通流量预测;在学术网络中,它可以帮助建模研究者与科研成果之间的连接关系;在生物信息学领域,图学习用于分析蛋白质网络和基因表达数据,促进新药发现和疾病机理研究;在知识图谱和自然语言处理中,它助力于构建更丰富、更准确的语义关系,推进智能问答和搜索系统的发展。

随后,黄老师分析了图学习面临的一些挑战和解决方案,比如,如何使模型在数据稀疏的条件下更好地学习到图的表征、让模型具有更好地泛化能力、弱化图结构中的“噪音”对模型的影响。黄老师指出,自监督学习为这些问题提供了一种有效的学习范式,它能够高效学习图的深层次表征,提升模型在未知数据上的泛化能力,并有效减弱噪音的影响。这种学习方式在处理未标注的大规模图数据时特别有价值,不仅提高了数据利用效率,还增加了模型的灵活性和适应性,甚至能够探索和揭示图中未知的结构和模式,为科学研究和实际应用提供新的洞察和知识。

最后,他还带领大家探索了大型语言模型(LLMs)在图学习领域的应用潜力,分析了大语言模型在理解和生成复杂语言结构方面的能力,展示了这些模型如何被应用于图学习,尤其是在提取和理解图结构数据中的语言信息方面的创新做法。

02

夏良昊

Towards Large Model for Graphs

夏良昊首先深入探讨了大型机器学习模型在处理图数据方面的独特优势和应用前景。他详细阐述了如何利用大模型处理复杂的图结构数据,特别是在社交网络分析、知识图谱构建以及推荐系统中的应用。随后,他为我们综述了大图模型的相关工作,包括Pretrained GNNs系列的GraphMAE、GraphPrompt,LLM for Graphs系列的GraphGPT、GraphLLM,LLM-enhanced GNNs系列的SimTeG、ENG,Graph Foundation Models系列的OFA、Ultra等。

他通过具体的案例工作,说明大图模型研究的挑战,比如在应用预训练的图神经网络(GNNs)处理图数据时,如何有效迁移和调整在大规模数据集上预训练的模型,以适应特定的图结构数据和任务。对于大型语言模型(LLM)在图数据中的应用,难点在于如何有效融合图结构的特性和语言模型的语义理解能力,特别是在处理图中复杂的节点和边关系时。在LLM增强的图神经网络中,挑战在于两种模型间的协同和优化,确保模型能够有效结合GNN的结构理解和LLM的语义处理能力,同时处理好模型的复杂性和计算效率问题。而引入Graph Foundation Models,这些挑战进一步扩展到如何构建一个通用、高效且可扩展的图模型框架,使得该框架能够适应各种类型的图数据和多样化的图任务。对于这些挑战,要求在模型架构、训练策略、数据表示和跨领域泛化能力上进行创新,以优化模型的性能和适应性。

03

杨雨豪

Large Languages Models for Sturctured Data in BioChem

大语言模型展现出强大的零样本和人类指令的跟随能力,吸引了众多研究者去探索,当结构化数据及图结构,与LLM相结合会产生怎样奇妙的化学反应?杨雨豪围绕该问题带领观众探索了如何利用LLM去处理复杂的生物化学中的图数据,包括分子的结构、蛋白质的序列和一些生物化学中的知识图谱等。

他首先分析了使用大语言模型来助力生物化学中图数据的原因,主要有三点:该领域药物的发现和预测是耗时耗力的,大语言模型可以加速该过程;整合LLM中知识库中的多样信息从而做出更加全面和准确的预测决策;利用LLM支持相关领域研究者的创新和合作从而促进更好的科学发现。其次他介绍了该领域目前取得的一些进展及LLM在分子任务等结构化数据上的应用,包括分子属性的预测、分子的结构描述、利用自然语言描述的分子生成、蛋白子的描述、蛋白质的反向折叠、蛋白质的性质预测等。最后,他也指出该领域面对的一些挑战和问题,如目前做分子结构数据化的工作并未自然地被嵌入到LLM中、目前关注生成的任务还处于初期,一些更具挑战性的任务还有待探索、迫切需要一个关注特定领域任务的基座模型等。

04

汤嘉斌

GraphGPT: Graph Instruction Tuning for Large Language Models

图神经网络 (GNN) 通过图节点之间的递归信息交换和聚合实现了先进的图结构理解。为了提高模型的鲁棒性,自监督学习 (SSL) 已成为数据增强的一种有前途的方法。然而,现有的生成预训练图嵌入的方法通常依赖于对特定下游任务标签进行微调,这限制了它们在标记数据稀缺或不可用的情况下的可用性。

聚集上述问题,汤嘉斌对在具有挑战性的零样本学习场景中推进图模型的泛化能力进行研究。在报告中,他介绍了一种将 LLM 与图结构知识与图指令调整范式对齐的框架——GraphGPT。该框架通过利用一种简单而有效的图-文本对齐的方式,使得LLM能够理解和解释图的结构组件,加强了其在不同下游任务中的适应性,在不同的零样本图学习场景中验证了该框架的有效性与泛化性。

05

任旭滨

Enhancing Recommender Systems with Large Language Models

目前,学术界正在研究如何有效地将大语言模型的能力运用到图结构任务上,随着近年来图神经网络的发展,以及图网络在推荐系统领域的运用,图上的链路预测实际就等价于推荐系统的任务。任旭滨围绕该问题带领观众从两个方向(分别是基于LLM进行图数据增强以及图网络与LLM对齐)了解如何基于LLM来增强推荐系统的性能。

首先介绍的第一份工作是LLMRec(https://github.com/HKUDS/LLMRec)。在推荐算法所用到的传统图结构数据中,不但可能缺乏有效的节点特征数据,同时也会存在有噪音边。该算法首先引入了多模态的数据集来增强节点特征,并且利用LLM的文本理解能力通过推理用户商品的画像进行进一步的特征优化。此外,该算法通过利用LLM来对从图上采样的训练数据进行了增广,其基于语言模型的理解能力提供有效且高质量的训练数据以优化模型的训练。通过在真实世界多模态数据集上的实验以及消融实验,该工作有效地证明了其所提出的方法以及其中组件的有效性。

其次介绍的第二份工作是RLMRec(https://github.com/HKUDS/RLMRec)。该工作通过设计了一套高效且无偏的用户(商品)画像的生成策略,来对推荐图上的节点提供了丰富的文本描述,体现了其交互的偏好。而后利用互信息最大化的思想,从理论上有效地将协同过滤的特征表示和文本描述的特征表示进行对齐。具体实践时,本文提出了对比式对齐和生成式对齐,通过在真实世界的数据集上进行验证,两种方法分别在不同的任务场景上体现出了优势,例如对比式对齐的方式更加适用于推荐性能的优化,生成式对齐的方式更加适用于对推荐算法的预训练,均有不错的性能。

提醒

点击“阅读原文”跳转到00:00:01

可以查看回放哦!

往期精彩文章推荐

673fb3fa2403cee06952a18643ccbb76.png

记得关注我们呀!每天都有新知识!

 关于AI TIME 

AI TIME源起于2019年,旨在发扬科学思辨精神,邀请各界人士对人工智能理论、算法和场景应用的本质问题进行探索,加强思想碰撞,链接全球AI学者、行业专家和爱好者,希望以辩论的形式,探讨人工智能和人类未来之间的矛盾,探索人工智能领域的未来。

迄今为止,AI TIME已经邀请了1600多位海内外讲者,举办了逾600场活动,超700万人次观看。

ab4c9589e6466e3eade0696c4c2d15f0.png

我知道你

在看

~

eb4528035de22834140d64a38374d386.gif

点击 阅读原文 查看回放!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1421415.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

华为——NGFW Module安装在集群交换机上,二层双机负载分担部署,交换机重定向引流

NGFW Module安装在集群交换机上,二层双机负载分担部署,交换机重定向引流 业务需求 如图1所示,两台交换机集群组网,两块NGFW Module分别安装在两台交换机的1号槽位组成双机负载分担组网。NGFW Module工作在二层,也就是…

走进水稻种植教学基地可视化:科技与农业知识的完美结合

随着科技的不断发展,农业领域也在不断创新和进步。水稻种植教学基地可视化系统是一种基于现代信息技术手段的教学方式,通过虚拟现实、3D建模等技术,将水稻种植的全过程进行模拟和展示。这种教学方式打破了传统农业教学的局限性,使…

腾讯云部署vue+node项目

文章目录 一、安装宝塔二、vue项目部署三、node项目部署 前言: 关于项目部署,一开始也是找了很多资料,费了点时间,所以记录一下。希望能对各位有所帮助。 一、安装宝塔 1.首先在控制台,进入云服务器的终端界面 2.输入命令和密码获取权限,并且安装宝塔界面 yum install -y w…

关于在Tkinter + Pillow图片叠加中出现的问题

这段时间我一直在尝试对多图层图片进行一个叠加的操作,想用tkinter实现出来,先看错误 这里我其实已经选择了图片,但是发现是ValueError,我尝试断点检测但是也无动于衷,因为设置变量检测的时候发现变量并没有错误&…

Opencv——图片卷积

图像滤波是尽量保留图像细节特征的条件下对目标图像的噪声进行抑制,是图像预处理中不可缺少的操作,其处理效果的好坏将直接影响到后续图像处理和分析的有效性和可靠性。 线性滤波是图像处理最基本的方法,它允许我们对图像进行处理,产生很多不同的效果。首先,我们需要一个二…

大数据学习之Redis,十大数据类型的具体应用(三)

目录 3.7 Redis位图(bitmap) 概念 需求 是什么 说明 能干嘛? 基本命令 3.7 Redis位图(bitmap) 概念 由0和1状态表现的二进制位的bit数组 需求 用户是否登陆过?Y / N 广告是否被点击过? 钉钉打…

【机器学习】常见算法详解第2篇:KNN之kd树介绍(已分享,附代码)

本系列文章md笔记(已分享)主要讨论机器学习算法相关知识。机器学习算法文章笔记以算法、案例为驱动的学习,伴随浅显易懂的数学知识,让大家掌握机器学习常见算法原理,应用Scikit-learn实现机器学习算法的应用&#xff0…

外汇监管牌照解析:确保交易安全与合规性

外汇交易中,资金安全与平台监管是大家最关心的话题。监管是评估外汇经纪商是否值得信赖、是否具备相关资质的关键依据,因此选择一家拥有海外合法监管的经济商至关重要。 那么,今天我们就来聊聊全球权威的几大监管机构 — FCA、ASIC、NFA、FSA…

linux -- 内存管理 -- 页面分配器

linux内存管理 为什么要了解linux内存管理 分配并使用内存,是内核程序与驱动程序中非常重要的一环。内存分配函数都依赖于内核中一个非常复杂而重要的组件 - 内存管理。 linux驱动程序不可避免要与内核中的内存管理模块打交道。 linux内存管理可以总体上分为两大…

Tensorflow2.0笔记 - Tensor的限值clip操作

本笔记主要记录使用maximum/minimum,clip_by_value和clip_by_norm来进行张量值的限值操作。 import tensorflow as tf import numpy as nptf.__version__#maximum/minimumz做上下界的限值 tensor tf.random.shuffle(tf.range(10)) print(tensor)#maximum(x, y, nameNone) #对…

数据可视化 pycharts实现地理数据可视化(全球地图)

自用版 紧急整理一点可能要用的可视化代码,略粗糙 以后有机会再改 requirements: python3.6及以上pycharts1.9 数据格式为: 运行结果为: import pandas as pd from pyecharts.charts import Map, Timeline from pyecharts im…

Unity3D正则表达式的使用

系列文章目录 unity工具 文章目录 系列文章目录前言一、匹配正整数的使用方法1-1、代码如下1-2、结果如下 二、匹配大写字母2-1、代码如下1-2、结果如下 三、Regex类3-1、Match()3-2、Matches()3-3、IsMatch() 四、定义正则表达式…

TypeScript 学习笔记(Day2)

「写在前面」 本文为 b 站黑马程序员 TypeScript 教程的学习笔记。本着自己学习、分享他人的态度,分享学习笔记,希望能对大家有所帮助。推荐先按顺序阅读往期内容: 1. TypeScript 学习笔记(Day1) 目录 3 TypeScript 常…

Java-并发高频面试题

1.说一下你对Java内存模型(JMM)的理解? 其实java内存模型是一种抽象的模型,具体来看可以分为工作内存和主内存。 JMM规定所有的变量都会存储再主内存当中,再操作的时候需要从主内存中复制一份到本地内存(c…

面试题:MySQL数据库索引失效的10连问你学会了吗?

博主猫头虎的技术世界 🌟 欢迎来到猫头虎的博客 — 探索技术的无限可能! 专栏链接: 🔗 精选专栏: 《面试题大全》 — 面试准备的宝典!《IDEA开发秘籍》 — 提升你的IDEA技能!《100天精通Golang》…

【2024.1.30练习】李白打酒加强版(25分)

题目描述 题目思路 在最多数据的情况下,有100个店100朵花,总情况为的天文数字,暴力枚举已经不可能实现,考虑使用动态规划解决问题。最后遇到的一定是花,所以思路更倾向于倒推。 建立二维数组,容易联想到为…

vxe-table从2.0升级到3.0,vxe-table-plugin-virtual-tree虚拟滚动失效

问题:系统一直使用的vxe-table2.0,vxe-table2.0不支持树的虚拟滚动,为了解决这个问题,引入了vxe-table-plugin-virtual-tree插件,现在系统vxe-table升级3.0,vxe-table-plugin-virtual-tree的虚拟滚动失效了…

【MySQL】学习如何通过DQL进行数据库数据的条件查询

🌈个人主页: Aileen_0v0 🔥热门专栏: 华为鸿蒙系统学习|计算机网络|数据结构与算法 ​💫个人格言:“没有罗马,那就自己创造罗马~” #mermaid-svg-63IIm2s5sIhQfsfy {font-family:"trebuchet ms",verdana,arial,sans-serif;font-siz…

2024年【T电梯修理】及T电梯修理复审模拟考试

题库来源:安全生产模拟考试一点通公众号小程序 T电梯修理是安全生产模拟考试一点通总题库中生成的一套T电梯修理复审模拟考试,安全生产模拟考试一点通上T电梯修理作业手机同步练习。2024年【T电梯修理】及T电梯修理复审模拟考试 1、【多选题】工作结束跨…

Windows驱动开发之环境搭建,长期Waiting for connecting...思路

Windows驱动开发之环境搭建 1、前期准备 Vmware虚拟机软件 Windows10 iso安装包 Visual Studio2022 IDE软件 SDK安装(一定要勾选上debug选项,windbg在里面) WDK(Windows驱动程序工具包) WDK安装请参考官方文档&…