索引
datagrip远程连接linux
首先在要在Linux端安装MySQL
linux端操作:
mysql> create user 'root'@'%' identified with mysql_native_password by 'Wyxbuke00.';
Query OK, 0 rows affected (0.01 sec)
mysql> grant all on *.* to 'root'@'%';
Query OK, 0 rows affected (0.02 sec)
datagrip操作:
索引概述
-
介绍
索引是帮助MySQL高效获取数据的数据结构。在数据之外,数据库系统还维护者满足特定查找算法的数据结构,这些数据结构以某种方式引用数据,这样就可以在这些数据结构上实现高级查找算法,这种数据结构就是索引。
-
优缺点
优势 | 劣势 |
---|---|
提高数据检索的效率,降低数据库的IO成本 | 索引列也是要占用空间的 |
通过索引列对数据进行排序,降序数据排序的成本,降低CPU的消耗 | 索引大大提高了查询效率,同时却也降低更新表的速度,如对表进行insert,update,delete时,效率降低 |
索引结构
索引结构 | 描述 |
---|---|
B+Tree索引 | 最常见的索引类型,大部分引擎都支持B+树索引 |
Hash索引 | 底层数据结构是用哈希表实现的,只有精确匹配索引列的查询才有效,不支持范围查询 |
R+tree(空间索引) | 空间索引是MySQL引擎的一个特殊索引类型,主要用于地理空间数据类型,通常使用较少 |
Full-text(全文索引) | 是一种通过建立倒排索引,快速匹配文档的方式。类似于lucene,solr,es |
索引 | innodb | myisam | memory |
---|---|---|---|
B+tree索引 | 支持 | 支持 | 支持 |
Hash索引 | 不支持 | 不支持 | 支持 |
R-tree索引 | 不支持 | 支持 | 不支持 |
Full-text | 5.6之后支持 | 支持 | 不支持 |
如果没有特别指明,都是指B+树结构组织的索引。
-
二叉树
如果主键是顺序插入的,则会形成一个单向链表,结构如下:
所以,如果选择二叉树作为索引结构,会存在以下缺点:
-
顺序插入时,会形成一个链表,查询性能大大降低。
-
大数据量情况下,层级较深,检索速度慢。
但是,即使如此,由于红黑树也是一颗二叉树,所以也会存在一个缺点:
-
大数据量情况下,层级较深,检索速度慢。
-
B-tree
B-Tree,B树是一种多叉路衡查找树,相对于二叉树,B树每个节点可以有多个分支,即多叉。 以一颗最大度数(max-degree)为5(5阶)的b-tree为例,那这个B树每个节点最多存储4个key,5 个指针:
特点:
-
5阶的B树,每一个节点最多存储4个key,对应5个指针。
-
一旦节点存储的key数量到达5,就会裂变,中间元素向上分裂。
-
在B树中,非叶子节点和叶子节点都会存放数据。
-
B+tree
-
绿色框框起来的部分,是索引部分,仅仅起到索引数据的作用,不存储数据。
-
红色框框起来的部分,是数据存储部分,在其叶子节点中要存储具体的数据。
B+Tree 与 B-Tree相比,主要有以下三点区别:
-
所有的数据都会出现在叶子节点。
-
叶子节点形成一个单向链表。
-
非叶子节点仅仅起到索引数据作用,具体的数据都是在叶子节点存放的。
MySQL索引数据结构对经典的B+Tree进行了优化。在原B+Tree的基础上,增加一个指向相邻叶子节点 的链表指针,就形成了带有顺序指针的B+Tree,提高区间访问的性能,利于排序。
-
Hash
哈希索引就是采用一定的hash算法,将键值换算成新的hash值,映射到对应的槽位上,然后存储在 hash表中。
特点
-
Hash索引只能用于对等比较(=,in),不支持范围查询(between,>,< ,...)
-
无法利用索引完成排序操作
-
查询效率高,通常(不存在hash冲突的情况)只需要一次检索就可以了,效率通常要高于B+tree索 引
存储引擎支持
在MySQL中,支持hash索引的是Memory存储引擎。 而InnoDB中具有自适应hash功能,hash索引是 InnoDB存储引擎根据B+Tree索引在指定条件下自动构建的。