读 NebulaGraph源码 | 查询语句 LOOKUP 的一生

news2024/12/25 10:14:08

本文由社区用户 Milittle 供稿

LOOKUP 是图数据库 NebulaGraph 的一个查询语句。它依赖索引,可以查询点或者边的信息。在本文,我将着重从源码的角度解析一下 LOOKUP 语句的一生是如何度过的。

本文源码阅读基于内核源码的 v3.3.0 版本,详见 GitHub https://github.com/vesoft-inc/nebula/releases/tag/v3.3.0

读源码之前

首先,我们需要明确 NebulaGraph 中 LOOKUP 语句的语法:

LOOKUP ON {<vertex_tag> | <edge_type>}
[WHERE <expression> [AND <expression> ...]]
YIELD <return_list> [AS <alias>]
[<clause>];

<return_list>
    <prop_name> [AS <col_alias>] [, <prop_name> [AS <prop_alias>] ...];
  • <vertex_tag> 是 Tag 的类型,比如:数据集 basketballplayer 中的 player 和 team;
  • <edge_type> 是 EdgeType 的类型,比如:数据集 basketballplayer 中的 follow 和 serve;
  • <expression> 是表达式;
  • <return_list> 是返回的列表,比如:id(vertex),这部分内容详细参见 nGQL 的 Schema 函数 nGQL Schema 函数详解;
  • <clause> 是子句,可以是 ORDER BYLIMIT 等子句,子句详情参见 子句;

这里有个 LOOKUP 使用注意事项:

  1. 如果已经存在点、边,但是没有索引。必须在新建索引后再通过 REBUILD INDEX 重建索引,才能使其生效;

读语句解析原理

为了便于大家理解这里放一张 NebulaGraph 计算层的服务架构:

我们再来看下此次阅读的语句,是一个比较简单的 LOOKUP Sentence。用比较简单的语句来解析 LOOKUP 语句的基本原理,后面可以慢慢扩展条件语句和子句:

// 我们需要分析以下语句
LOOKUP ON player YIELD id(vertex);

1. 从 Parser 开始

我们先从 Parser 入手分析 LOOKUP Sentence 的组成部分。这里不介绍 lex 词法分析和 yacc 语法分析,感兴趣的小伙伴自己可以了解一下。下面,我们直接上我们关心的部分:

我们打开源码,找到文件 src/parser/parser.yy 文件,里面有所有语句的定义。我们 定位到 LOOKUP Sentence,是这里 https://github.com/Milittle/nebula/blob/90a3107044ce1621c7834a0f36a4eef273ec2f31/src/parser/parser.yy#L2176。下面便是 LOOKUP 语句的定义,你也可以拷贝上面的链接访问 GitHub 查看。来,我们分析分析每个部分:

/// LOOKUP 语句的语法定义

lookup_sentence
    : KW_LOOKUP KW_ON name_label lookup_where_clause yield_clause {
        $$ = new LookupSentence($3, $4, $5);
    }
    ;

// KW_LOOKUP 是 LOOKUP 的关键字,大小写不敏感的
// KW_ON 是 ON 的关键字,大小写不敏感的
// name_label 是 LABEL 的定义,也是 strval,简单的说就是字符串
// lookup_where_clause 是 WHERE 子句的定义,这个我们后面有机会扩展介绍,也有一个对应的语义定义
// yield_clause 这个是 YIELD 输出数据的关键语句,在 v3.x 版本以后,YIELD 子句是必须要指定的,不指定会报语法错误

/// YIELD clause 的语法定义,其实 YIELD clause 用在了很多其他语句中,比如 GO、FIND PATH、GET SUBGRAPH

yield_clause
    : %empty { $$ = nullptr; }
    | KW_YIELD yield_columns {
        if ($2->hasAgg()) {
            delete($2);
            throw nebula::GraphParser::syntax_error(@2, "Invalid use of aggregating function in yield clause.");
        }
        $$ = new YieldClause($2);
    }
    | KW_YIELD KW_DISTINCT yield_columns {
        if ($3->hasAgg()) {
            delete($3);
            throw nebula::GraphParser::syntax_error(@3, "Invalid use of aggregating function in yield clause.");
        }
        $$ = new YieldClause($3, true);
    }
    ;

// 可以为 empty,但是后面 validator 会进行校验,不指定就会报 Error
// KW_YIELD 是 YIELD 的关键字,大小写不敏感
// yield_columns 是输出的列信息,也有对应的一个语法定义
// KW_DISTINCT 是 distinct 关键字,表示是否去除重复数据的语义,大小写不敏感

// LOOKUP Sentence 就是上面所有的信息组成,都会被构造在这个类里面,也就是 LOOKUP 语句的内容了

下面,我们继续从 lookup_sentence 语句的定义往下规约看,可以看到它属于 src/parser/parser.yy:2917: traverse_sentence → src/parser/parser.yy:2936: piped_sentence → src/parser/parser.yy:2942: set_sentence → src/parser/parser.yy:3924: sentence → src/parser/parser.yy:3933: seq_sentence

其实,上面这些你可以暂时忽略,因为这些都是对 sentence 的规约抽象,有些集合语句和管道语句。这里,我想表达的是这些语句一定会映射到 seq_sentence 上的,即,序列语句。你可以把它理解为用分号分隔的复合语句,只不过这里面只包含了一条 lookup_sentence 而已。这样子,就好理解为什么下文在 seq_sentence 寻找入口代码,而不是 lookup_sentence.

2. 从 nGQL 解析看 LOOKUP 语句

第二,从 nGQL 的解析过程继续看 LOOKUP Sentence。其实,刚才已经强调过了,这里解析出来的对象一定是 seq_sentence

/// src/graph/service/QueryInstance.cpp

void QueryInstance::execute() {
  Status status = validateAndOptimize(); // 1. 负责 validate、执行计划生成、执行计划优化等工作
  if (!status.ok()) {
    onError(std::move(status));
    return;
  }

  // Sentence is explain query, finish
  if (!explainOrContinue()) {  // 6. 判断是否是 explain 语句。如果是,直接输出执行计划,不做实际物理算子执行
    onFinish();
    return;
  }

  // The execution engine converts the physical execution plan generated by the Planner into a
  // series of Executors through the Scheduler to drive the execution of the Executors.
  scheduler_->schedule()    // 7. 实际物理算子调度执行的部分,通过 DAG,对每一个 plan -> executor 的转换执行(后续步骤会进行详解)
      .thenValue([this](Status s) {
        if (s.ok()) {
          this->onFinish(); // 8. 这里是干完了所有物理执行计划,然后开始处理客户端 resp 了
        } else {
          this->onError(std::move(s)); // 9. 这里是上面的过程出错了,需要处理 Error 信息
        }
      }) // 10. 下面是处理一些异常情况,也是走错误分支
      .thenError(folly::tag_t<ExecutionError>{},
                 [this](const ExecutionError &e) { onError(e.status()); })
      .thenError(folly::tag_t<std::exception>{},
                 [this](const std::exception &e) { onError(Status::Error("%s", e.what())); });
}

// 这个函数执行的是注释 1 的内容
Status QueryInstance::validateAndOptimize() {
  auto *rctx = qctx()->rctx();
  auto &spaceName = rctx->session()->space().name;
  VLOG(1) << "Parsing query: " << rctx->query();
  // Result of parsing, get the parsing tree
  // 2. 第一步中的语法解析就是这里的解释,对 nGQL 进行词法语法解析,出来的 result 就是 Sentence*,通过我们上面的分析,这里吐出来的就是 seq_sentence 了
  auto result = GQLParser(qctx()).parse(rctx->query());
  NG_RETURN_IF_ERROR(result);
  sentence_ = std::move(result).value();
  // 3. 这里是做指标的统计。这个可以在 dashboard 里面展示
  if (sentence_->kind() == Sentence::Kind::kSequential) {
    size_t num = static_cast<const SequentialSentences *>(sentence_.get())->numSentences();
    stats::StatsManager::addValue(kNumSentences, num);
    if (FLAGS_enable_space_level_metrics && spaceName != "") {
      stats::StatsManager::addValue(
          stats::StatsManager::counterWithLabels(kNumSentences, {{"space", spaceName}}), num);
    }
  } else {
    stats::StatsManager::addValue(kNumSentences);
    if (FLAGS_enable_space_level_metrics && spaceName != "") {
      stats::StatsManager::addValue(
          stats::StatsManager::counterWithLabels(kNumSentences, {{"space", spaceName}}));
    }
  }

  // Validate the query, if failed, return
  // 4. 这个是源码校验 nGQL 解析出来的内容是否符合我们的预期,如果不符合预期就报语法错误
  // validate 过程还会涉及到执行计划的生成,重点函数
  NG_RETURN_IF_ERROR(Validator::validate(sentence_.get(), qctx()));
  // Optimize the query, and get the execution plan
  // 5. 对上面生成的执行计划进行 RBO 规则的优化,这个留在后面有机会再介绍
  NG_RETURN_IF_ERROR(findBestPlan());
  stats::StatsManager::addValue(kOptimizerLatencyUs, *(qctx_->plan()->optimizeTimeInUs()));
  if (FLAGS_enable_space_level_metrics && spaceName != "") {
    stats::StatsManager::addValue(
        stats::StatsManager::histoWithLabels(kOptimizerLatencyUs, {{"space", spaceName}}));
  }

  return Status::OK();
}

我们按照上面的注释部分进行讲解,有的比较容易的部分,像注释 1、2、3、5。我们下面重点介绍注释 4 的部分

// src/graph/validator/Validator.cpp

// Entry of validating sentence.
// Check session, switch space of validator context, create validators and validate.
// static
// 1. 参数 sentence 就是刚才我们从语法解析器中拿到的 seq_sentence
// 2. 参数 qctx 是我们查询上下文,一个语句进来对应一个查询上下文,这个是在 QueryEngine 里面生成的,感兴趣可以自行阅读一下
Status Validator::validate(Sentence* sentence, QueryContext* qctx) {
  DCHECK(sentence != nullptr);
  DCHECK(qctx != nullptr);

  // Check if space chosen from session. if chosen, add it to context.
  auto session = qctx->rctx()->session();
  if (session->space().id > kInvalidSpaceID) {
    auto spaceInfo = session->space();
    qctx->vctx()->switchToSpace(std::move(spaceInfo));
  }

  // 3. 既然我们需要校验该 sentence 是否符合我们的预期,则需要根据 sentence 的类型,创建一个 validator,记住目前是 seq_sentence
  // 所以生成的就是 SequentialValidator,可以直接看下 makeValidator 函数的 switch case
  auto validator = makeValidator(sentence, qctx);
  // 4. 调用 validator 进行校验,我们切换到下面的函数中
  NG_RETURN_IF_ERROR(validator->validate());

  auto root = validator->root();
  if (!root) {
    return Status::SemanticError("Get null plan from sequential validator");
  }
  qctx->plan()->setRoot(root);
  return Status::OK();
}

// 5. 所有子类 validator,调用 validate 方法,进行校验
// Validate current sentence.
// Check validator context, space, validate, duplicate reference columns,
// check permission according to sentence kind and privilege of user.
Status Validator::validate() {
  if (!vctx_) {
    VLOG(1) << "Validate context was not given.";
    return Status::SemanticError("Validate context was not given.");
  }

  if (!sentence_) {
    VLOG(1) << "Sentence was not given";
    return Status::SemanticError("Sentence was not given");
  }

  if (!noSpaceRequired_ && !spaceChosen()) {
    VLOG(1) << "Space was not chosen.";
    return Status::SemanticError("Space was not chosen.");
  }

  if (!noSpaceRequired_) {
    space_ = vctx_->whichSpace();
    VLOG(1) << "Space chosen, name: " << space_.spaceDesc.space_name_ref().value()
            << " id: " << space_.id;
  }

  auto vidType = space_.spaceDesc.vid_type_ref().value().type_ref().value();
  vidType_ = SchemaUtil::propTypeToValueType(vidType);

  // 6. 调用子类 validateImpl
  NG_RETURN_IF_ERROR(validateImpl());

  // Check for duplicate reference column names in pipe or var statement
  NG_RETURN_IF_ERROR(checkDuplicateColName());

  // Execute after validateImpl because need field from it
  if (FLAGS_enable_authorize) {
    NG_RETURN_IF_ERROR(checkPermission());
  }

  // 7. 这里是生成执行计划调用
  NG_RETURN_IF_ERROR(toPlan());

  return Status::OK();
}

讲了这么久了,啥时候到 LOOKUP。只能说快了,因为第一次讲源码,一些上下文信息需要讲清楚,不然大家一看就看得云里雾里了。

3. 深入到 validator

下面,我们要进入 SequentialValidator.cppvalidateImpl() 去一探究竟。

// src/graph/validator/SequentialValidator.cpp

// Validator of sequential sentences which combine multiple sentences, e.g. GO ...; GO ...;
// Call validator of sub-sentences.
Status SequentialValidator::validateImpl() {
  Status status;
  if (sentence_->kind() != Sentence::Kind::kSequential) {
    return Status::SemanticError(
        "Sequential validator validates a SequentialSentences, but %ld is "
        "given.",
        static_cast<int64_t>(sentence_->kind()));
  }
  auto seqSentence = static_cast<SequentialSentences*>(sentence_);
  auto sentences = seqSentence->sentences();

  if (sentences.size() > static_cast<size_t>(FLAGS_max_allowed_statements)) {
    return Status::SemanticError("The maximum number of statements allowed has been exceeded");
  }

  DCHECK(!sentences.empty());

  // 我们的 StartNode 就是这里创建出来的
  seqAstCtx_->startNode = StartNode::make(seqAstCtx_->qctx);
  // 一般序列语句中会放很多语句,也就是分号分隔的语句,这里我们只有一条语句就是 lookup_sentence
  // LOOKUP 语句创建出来 LookupValidator,终于看到曙光了
  for (auto* sentence : sentences) {
    auto validator = makeValidator(sentence, qctx_);
    NG_RETURN_IF_ERROR(validator->validate());
    seqAstCtx_->validators.emplace_back(std::move(validator));
  }

  return Status::OK();
}

4. 读一读 LookupValidator

终于,看到点 LOOKUP 的影子了,LookupValidator 驾到:

// src/graph/validator/LookupValidator.cpp

// LOOKUP 的 validateImpl 比较简洁,直接对 From Where Yield e分别进行校验

Status LookupValidator::validateImpl() {
  lookupCtx_ = getContext<LookupContext>();

  // 详情请见下面的子函数分析
  NG_RETURN_IF_ERROR(validateFrom());
  // 此次不涉及,我们先不做分析
  NG_RETURN_IF_ERROR(validateWhere());
  // 详情请见下面的子函数分析
  NG_RETURN_IF_ERROR(validateYield());
  return Status::OK();
}

// Validate specified schema(tag or edge) from sentence
Status LookupValidator::validateFrom() {
  auto spaceId = lookupCtx_->space.id;
  auto from = sentence()->from();
  // 根据 spaceId 和指定的 label_name 查询 Schema
  auto ret = qctx_->schemaMng()->getSchemaIDByName(spaceId, from);
  NG_RETURN_IF_ERROR(ret);
  // 指定的是不是边类型
  lookupCtx_->isEdge = ret.value().first;
  // 指定的 schemaId
  lookupCtx_->schemaId = ret.value().second;
  schemaIds_.emplace_back(ret.value().second);
  return Status::OK();
}

// Validate yield clause.
Status LookupValidator::validateYield() {
  auto yieldClause = sentence()->yieldClause();
  if (yieldClause == nullptr) {
    return Status::SemanticError("Missing yield clause.");
  }
  // 这个是判断是否指定了 distinct 关键字,用于后续生成 dedup
  lookupCtx_->dedup = yieldClause->isDistinct();
  lookupCtx_->yieldExpr = qctx_->objPool()->makeAndAdd<YieldColumns>();

  // 如果是边类型,返回的列中,有 src、dst、rank、type
  if (lookupCtx_->isEdge) {
    idxReturnCols_.emplace_back(nebula::kSrc);
    idxReturnCols_.emplace_back(nebula::kDst);
    idxReturnCols_.emplace_back(nebula::kRank);
    idxReturnCols_.emplace_back(nebula::kType);
    // 校验边类型
    NG_RETURN_IF_ERROR(validateYieldEdge());
  } else { // 如果点类型、返回的列中有 vid
    idxReturnCols_.emplace_back(nebula::kVid);
    // 校验点类型,这次我们介绍点类型的校验
    NG_RETURN_IF_ERROR(validateYieldTag());
  }
  if (exprProps_.hasInputVarProperty()) {
    return Status::SemanticError("unsupport input/variable property expression in yield.");
  }
  if (exprProps_.hasSrcDstTagProperty()) {
    return Status::SemanticError("unsupport src/dst property expression in yield.");
  }
  extractExprProps();
  return Status::OK();
}

// Validate yield clause when lookup on tag.
// Disable invalid expressions, check schema name, rewrites expression to fit semantic,
// check type and collect properties.
Status LookupValidator::validateYieldTag() {
  auto yield = sentence()->yieldClause();
  auto yieldExpr = lookupCtx_->yieldExpr;
  // yield 子句里面的每一个逗号分隔的就是一个 col、我们的示例语句是 id(vertex)
  // src/parser/parser.yy:1559 对 col 进行了定义
  for (auto col : yield->columns()) {
    // 如果发现表达式有 Edge 类型的,则直接把语义错误
    if (ExpressionUtils::hasAny(col->expr(), {Expression::Kind::kEdge})) {
      return Status::SemanticError("illegal yield clauses `%s'", col->toString().c_str());
    }
    // 如果是 label 属性,则进行表达式名字的校验,比如 yield player.name 这种语句
    if (col->expr()->kind() == Expression::Kind::kLabelAttribute) {
      const auto& schemaName = static_cast<LabelAttributeExpression*>(col->expr())->left()->name();
      if (schemaName != sentence()->from()) {
        return Status::SemanticError("Schema name error: %s", schemaName.c_str());
      }
    }
    // 这块应该是重写表达式,有 label 属性转换为 Tag 的 prop,这里不是特别清楚,后续精读一下
    col->setExpr(ExpressionUtils::rewriteLabelAttr2TagProp(col->expr()));
    NG_RETURN_IF_ERROR(ValidateUtil::invalidLabelIdentifiers(col->expr()));

    auto colExpr = col->expr();
    // 推测表达式的类型
    auto typeStatus = deduceExprType(colExpr);
    NG_RETURN_IF_ERROR(typeStatus);
    // 组织输出,由名字和类型组成的集合对象
    outputs_.emplace_back(col->name(), typeStatus.value());
    yieldExpr->addColumn(col->clone().release());
    NG_RETURN_IF_ERROR(deduceProps(colExpr, exprProps_, &schemaIds_));
  }
  return Status::OK();
}

到这里,LOOKUP 的 validator 工作差不多完事了。

5. 语句如何变成执行计划

介绍得不够细致,我还在熟悉过程,接下来就是介绍将 sentence 转换成执行计划的过程了。

执行计划生成

执行计划的生成,像是一些简单的语句,就通过子类的 validatortoPlan 直接生成了,比如:SHOW HOSTS 这个语句,就是直接在 ShowHostsValidator::toPlan 方法中直接生成执行计划。但是,对于一些比较复杂的语句来说,子类 validator 都没有实现 toPlan 方法,也就是需要借助父类的 toPlan 方法来生成执行计划。比如,本文在读的 LOOKUP 语句也属于复杂语句:

// src/graph/validator/Validator.cpp

// 这里就是复杂语句生成执行计划的入口
// 需要配合 AstContext 来生成,对于 LOOKUP 语句来说,就是 LookupContext
// Call planner to get final execution plan.
Status Validator::toPlan() {
  // **去子类 LookupValidator 的 getAstContext() 方法看下,是不是返回的是 LookupContext**
  auto* astCtx = getAstContext();
  if (astCtx != nullptr) {
    astCtx->space = space_;
  }
  // 利用抽象语法树上下文,借用 Planner 的 toPlan 生成具体的执行计划
  auto subPlanStatus = Planner::toPlan(astCtx);
  NG_RETURN_IF_ERROR(subPlanStatus);
  auto subPlan = std::move(subPlanStatus).value();
  // 将返回的 subPlan 对 root 和 tail 进行填充
  root_ = subPlan.root;
  tail_ = subPlan.tail;
  VLOG(1) << "root: " << root_->kind() << " tail: " << tail_->kind();
  return Status::OK();
}

6. 进入 toPlan() 一探究竟

从章节 5. 上面获知,需要进入 Planner 的 toPlan 方法一探究竟

// src/graph/planner/Planner.cpp

StatusOr<SubPlan> Planner::toPlan(AstContext* astCtx) {
  if (astCtx == nullptr) {
    return Status::Error("AstContext nullptr.");
  }
  const auto* sentence = astCtx->sentence;
  DCHECK(sentence != nullptr);
  // 从抽象语法树的执行上下文取到我们的 sentence
  // 下面的 plannerMap 是我们在 src/graph/planner/PlannersRegister.cpp 注册好的,一些复杂的语句都在这里注册好了
  auto planners = plannersMap().find(sentence->kind());
  if (planners == plannersMap().end()) {
    return Status::Error("No planners for sentence: %s", sentence->toString().c_str());
  }
  for (auto& planner : planners->second) { // second 是语句具体对应的 planner 的实例化对象: MatchAndInstantiate
    if (planner.match(astCtx)) { // match 方法是具体 planner 的 match 方法,对应到 LookupPlaner,就是 match
      // 这里的 instantiate 是 LookupPlanner 的 make 方法
      // 这里的 transform 是拿着 lookupcontext 生成执行计划的函数
      return planner.instantiate()->transform(astCtx);
    }
  }
  return Status::Error("No planner matches sentence: %s", sentence->toString().c_str());
}

7. 计划中的 transform()

我们分析到这里,使用了 Planner 的 toPlan 方法生成一些复杂语句的执行计划。接下来,就是进去 LookupPlanner 的 transform 方法从 LookupContext 转换到执行计划的过程了。我们直接定位到 LookupPlanner 的 transform 方法上:

// src/graph/planner/ngql/LookupPlanner.cpp

StatusOr<SubPlan> LookupPlanner::transform(AstContext* astCtx) {
  // 是不是我们上面提到的 lookupContext
  auto lookupCtx = static_cast<LookupContext*>(astCtx);
  auto qctx = lookupCtx->qctx;
  // ON 后面的 name_label
  auto from = static_cast<const LookupSentence*>(lookupCtx->sentence)->from();
  SubPlan plan;
  
  // 如果是边的话,生成的是 EdgeIndexFullScan
  if (lookupCtx->isEdge) {
    auto* edgeIndexFullScan = EdgeIndexFullScan::make(qctx,
                                                      nullptr,
                                                      from,
                                                      lookupCtx->space.id,
                                                      {},
                                                      lookupCtx->idxReturnCols,
                                                      lookupCtx->schemaId,
                                                      lookupCtx->isEmptyResultSet);
    edgeIndexFullScan->setYieldColumns(lookupCtx->yieldExpr);
    plan.tail = edgeIndexFullScan;
    plan.root = edgeIndexFullScan;
  } else { // 如果是点的话,生成的是 TagIndexFullScan
    auto* tagIndexFullScan = TagIndexFullScan::make(qctx,
                                                    nullptr,
                                                    from,
                                                    lookupCtx->space.id,
                                                    {},
                                                    lookupCtx->idxReturnCols,
                                                    lookupCtx->schemaId,
                                                    lookupCtx->isEmptyResultSet);
    tagIndexFullScan->setYieldColumns(lookupCtx->yieldExpr);
    plan.tail = tagIndexFullScan;
    plan.root = tagIndexFullScan;
  }
  plan.tail->setColNames(lookupCtx->idxColNames);

  // 我们没有指定 where 语句,所以不会有 filter 算子
  if (lookupCtx->filter) {
    plan.root = Filter::make(qctx, plan.root, lookupCtx->filter);
  }
  // 会有 Project 算子生成:对输出列做一个映射
  plan.root = Project::make(qctx, plan.root, lookupCtx->yieldExpr);
  // 这里是 distinct 关键字,我们没有指定,默认是没有这个算子的
  if (lookupCtx->dedup) {
    plan.root = Dedup::make(qctx, plan.root);
  }

  return plan;
}

8. explain 验证生成的执行计划

通过我们上述的介绍,执行计划已经生成了。那么,我们是不是可以通过 explain 或者 profile 来验证我们分析生成的执行计划就是 Project→TagIndexFullScan→Start 呢。下面是我们通过 explain 生成的执行计划,它验证了我们分析的源码和生成的执行计划是一致的。 大喜😊

(root@nebula) [basketballplayer]> explain lookup on player yield id(vertex)
Execution succeeded (time spent 615µs/1.057064ms)

Execution Plan (optimize time 42 us)

-----+------------------+--------------+----------------+-----------------------------------
| id | name             | dependencies | profiling data | operator info                    |
-----+------------------+--------------+----------------+-----------------------------------
|  2 | Project          | 3            |                | outputVar: {                     |
|    |                  |              |                |   "colNames": [                  |
|    |                  |              |                |     "id(VERTEX)"                 |
|    |                  |              |                |   ],                             |
|    |                  |              |                |   "type": "DATASET",             |
|    |                  |              |                |   "name": "__Project_2"          |
|    |                  |              |                | }                                |
|    |                  |              |                | inputVar: __TagIndexFullScan_1   |
|    |                  |              |                | columns: [                       |
|    |                  |              |                |   "id(VERTEX)"                   |
|    |                  |              |                | ]                                |
-----+------------------+--------------+----------------+-----------------------------------
|  3 | TagIndexFullScan | 0            |                | outputVar: {                     |
|    |                  |              |                |   "colNames": [                  |
|    |                  |              |                |     "_vid",                      |
|    |                  |              |                |     "player._tag",               |
|    |                  |              |                |     "player.age",                |
|    |                  |              |                |     "player.name"                |
|    |                  |              |                |   ],                             |
|    |                  |              |                |   "type": "DATASET",             |
|    |                  |              |                |   "name": "__TagIndexFullScan_1" |
|    |                  |              |                | }                                |
|    |                  |              |                | inputVar:                        |
|    |                  |              |                | space: 6                         |
|    |                  |              |                | dedup: false                     |
|    |                  |              |                | limit: 9223372036854775807       |
|    |                  |              |                | filter:                          |
|    |                  |              |                | orderBy: []                      |
|    |                  |              |                | schemaId: 7                      |
|    |                  |              |                | isEdge: false                    |
|    |                  |              |                | returnCols: [                    |
|    |                  |              |                |   "_vid",                        |
|    |                  |              |                |   "_tag",                        |
|    |                  |              |                |   "age",                         |
|    |                  |              |                |   "name"                         |
|    |                  |              |                | ]                                |
|    |                  |              |                | indexCtx: [                      |
|    |                  |              |                |   {                              |
|    |                  |              |                |     "columnHints": [],           |
|    |                  |              |                |     "filter": "",                |
|    |                  |              |                |     "index_id": 11               |
|    |                  |              |                |   }                              |
|    |                  |              |                | ]                                |
-----+------------------+--------------+----------------+-----------------------------------
|  0 | Start            |              |                | outputVar: {                     |
|    |                  |              |                |   "colNames": [],                |
|    |                  |              |                |   "type": "DATASET",             |
|    |                  |              |                |   "name": "__Start_0"            |
|    |                  |              |                | }                                |
-----+------------------+--------------+----------------+-----------------------------------

阶段小结

源码阅读到这里,我们知道 Graph 层从一个 nGQL 语句,到生成执行计划的所有过程。当中可能有一些细节没有面面俱到,但是,我们应该整体对代码有了初步了解。

9. 调度执行计划

接下来,我们要了解执行计划是如何被物理执行、Executor 是如何调度执行计划的。目前,我们只涉及到三个物理算子的执行,而且 Start 节点是一个没有实际语义的算子。这里我们仔细分析一下 TagIndexScan 和 Project 算子。

我们需要先回到第二章节的注释 7 那里了。注释 5 我们就不讲了,那里是内核语句 RBO 规则对执行计划进行优化的子模块,我们的简单语句的执行计划不涉及这块,留下后续扩展介绍吧。

// src/graph/scheduler/AsyncMsgNotifyBasedScheduler.cpp
// 我们回到了注释 7 那里,对 scheduler_ 的 shcedule 方法解读一下
// 然后我们再看 LOOKUP 语句的两个物理算子在这里是怎么执行的
// 目前内核只实现了基于消息的异步调度器
folly::Future<Status> AsyncMsgNotifyBasedScheduler::schedule() {
  // 拿到执行计划的 root 节点,在这次的语句中,就是 Project
  auto root = qctx_->plan()->root();
  // 这块还没有深入解读过,后续再扩展吧
  if (FLAGS_enable_lifetime_optimize) {
    // special for root
    root->outputVarPtr()->userCount.store(std::numeric_limits<uint64_t>::max(),
                                          std::memory_order_relaxed);
    analyzeLifetime(root);
  }
  // 递归将执行计划 convert 到物理执行计划 Executor,也就是 Project->ProjectExecutor, TagindexFullScan->IndexScanExecutor
  // 把物理 Executor 的拓扑结构创建出来
  //    ProjectExecutor 依赖 IndexScanExecutor IndexScanExecutor 的后继是 ProjectExecutor
  //    IndexScanExecutor 依赖 StartExecutor StartExecutor 的后继是 IndexScanExecutor
  auto executor = Executor::create(root, qctx_);
  // 这里开始 DAG 的物理计划执行
  // 调度是基于 folly 的 Promise 和 Future 异步调用展开的
  return doSchedule(executor);
}

folly::Future<Status> AsyncMsgNotifyBasedScheduler::doSchedule(Executor* root) const {
  // 这个是按照算子的 id,承诺给别的算子的 promise(你可以理解为谁依赖这个算子,那么就给谁一个 promise)
  std::unordered_map<int64_t, std::vector<folly::Promise<Status>>> promiseMap;
  // 这个是当前算子,被谁许诺过的 future,是从 promise 那里或者的结果值。也就是说,如果这个算子依赖了某些算子,只有它们的许诺兑现了(promise set value),这里的 future 才能得到处理
  std::unordered_map<int64_t, std::vector<folly::Future<Status>>> futureMap;
  // 这个 queue 是为了辅助算子生成 promiseMap 和 futureMap 的
  std::queue<Executor*> queue;
  // 这个 queue2 是为结合刚才生成的 promiseMap 和 futureMap 实际进行调度运行的
  std::queue<Executor*> queue2;
  // 算子节点访问标记,避免重复遍历
  std::unordered_set<Executor*> visited;

  auto* runner = qctx_->rctx()->runner();
  // 首先把 root 的 promise 出来,这个对于我们的执行计划中的算子就是 Project
  folly::Promise<Status> promiseForRoot;
  auto resultFuture = promiseForRoot.getFuture();
  promiseMap[root->id()].emplace_back(std::move(promiseForRoot));
  queue.push(root);
  visited.emplace(root);
  // 开始 DAG 访问图计算节点,生成每一个节点的 promise 和 future
  while (!queue.empty()) {
    auto* exe = queue.front();
    queue.pop();
    queue2.push(exe);

    std::vector<folly::Future<Status>>& futures = futureMap[exe->id()];
    if (exe->node()->kind() == PlanNode::Kind::kArgument) {
      auto nodeInputVar = exe->node()->inputVar();
      const auto& writtenBy = qctx_->symTable()->getVar(nodeInputVar)->writtenBy;
      for (auto& node : writtenBy) {
        folly::Promise<Status> p;
        futures.emplace_back(p.getFuture());
        auto& promises = promiseMap[node->id()];
        promises.emplace_back(std::move(p));
      }
    } else {
      for (auto* dep : exe->depends()) {
        auto notVisited = visited.emplace(dep).second;
        if (notVisited) {
          queue.push(dep);
        }
        folly::Promise<Status> p;
        futures.emplace_back(p.getFuture());
        auto& promises = promiseMap[dep->id()];
        promises.emplace_back(std::move(p));
      }
    }
  }
  // 开始调度执行,下面的 scheduleExecutor 这个方法是关键
  // 这个方法是纯异步运行的,比如运行 ProjectExecutor,它的依赖是 IndexScanExecutor
  // 那么 ProjectExecutor 的 future 就来自于 IndexScanExecutor 的 promise
  // ProjectExecutor 需要在 folly::collect 出等待 IndexScanExecutor 的执行结束
  // 这样 ProjectExecutor 才可以得到执行的机会
  while (!queue2.empty()) {
    auto* exe = queue2.front();
    queue2.pop();

    auto currentFuturesFound = futureMap.find(exe->id());
    DCHECK(currentFuturesFound != futureMap.end());
    auto currentExeFutures = std::move(currentFuturesFound->second);

    auto currentPromisesFound = promiseMap.find(exe->id());
    DCHECK(currentPromisesFound != promiseMap.end());
    auto currentExePromises = std::move(currentPromisesFound->second);

    scheduleExecutor(std::move(currentExeFutures), exe, runner)
        .thenTry([this, pros = std::move(currentExePromises)](auto&& t) mutable {
          if (t.hasException()) {
            notifyError(pros, Status::Error(std::move(t).exception().what()));
          } else {
            auto v = std::move(t).value();
            if (v.ok()) {
              notifyOK(pros); // **Promise填充:成功以后具体填充promise的地方**
            } else {
              notifyError(pros, v);
            }
          }
        });
  }

  return resultFuture;
}

// 你可以把这个函数理解为异步调度器,上面把所有的算子通过这个函数进行了调度
// 第一个参数包含了该算子所有的 futures,也就是这个算子依赖算子的 promise 需要执行结束,这里的 futures 才可以获取到结果
// 第二个参数是该算子的 Executor
// 第三个参数是执行器,你可以理解为线程池

// 根据不同的算子类型,实现不同的分支运行,我们上面的语句是走 default 分支
// lookup on player yield id(vertex);语句整体的调度过程
// ProjectExecutor(P)->IndexScanExecutor(I)->Start(S)执行计划。下面我们用简写来表示三个算子
// 首先 P 算子调度以后,它到了 default 分支,depends 不为空,那么走 runExecutor
// P 算子的 future 就来自于 I 算子的 promise,所以需要等待 I 算子的执行结束
// I 算子调度到这个函数以后,它到了 default 分支,depends 不为空,那么走 runExecutor
// I 算子的 future 就来自于 S 算子的 promise,所以需要等待 S 算子的执行结束
// S 算子调度到这个函数以后,它到了 default 分支,depends 为空,那么走 runLeafExecutor
// S 算子就开始 execute 的逻辑了,可以去看看 StartExecutor 的 executor 方法,啥也没干,所以之前说 start 算子没啥语义
// S 算子结束以后,它的 promise 被填充,其实是上面那个函数的回调填充的,具体看我上面的注释 **Promise 填充**
// 那么 I 算子的 future 就得到了响应,去 runExecutor 看看,是不是也是有一个回调,立马发起了 I 算子的调用
// 当 I 算子的 promise 也被上面的函数填充
// 那么 P 算子的 executor 也得到了执行,这下就算执行完
folly::Future<Status> AsyncMsgNotifyBasedScheduler::scheduleExecutor(
    std::vector<folly::Future<Status>>&& futures, Executor* exe, folly::Executor* runner) const {
  switch (exe->node()->kind()) {
    case PlanNode::Kind::kSelect: {
      auto select = static_cast<SelectExecutor*>(exe);
      return runSelect(std::move(futures), select, runner);
    }
    case PlanNode::Kind::kLoop: {
      auto loop = static_cast<LoopExecutor*>(exe);
      return runLoop(std::move(futures), loop, runner);
    }
    case PlanNode::Kind::kArgument: {
      return runExecutor(std::move(futures), exe, runner);
    }
    default: {
      if (exe->depends().empty()) {
        return runLeafExecutor(exe, runner);
      } else {
        return runExecutor(std::move(futures), exe, runner);
      }
    }
  }
}

10. LOOKUP 语句的算子在执行什么?

上面我介绍了物理算子通过 folly 三方库的 Promise 和 Future 异步编程模型来实现调度执行。接下来,重点介绍一下我们本次 LOOKUP 语句中两个算子执行了什么。源码走起:上面的语句主要介绍了三个物理算子:ProjectExecutorIndexScanExecutorStartExecutor。这里多说一句,因为和 IndexScan 有关的算子都会映射到 IndexScanExecutor

// StartExecutor:啥也没干

// IndexScanExecutor:是主要干活的,需要 graph 和 storage 的 rpc,拉取数据

// ProjectExecutor:这个物理执行算子不需要和 storage 交互,直接在 graph 层闭环计算

// 这三个算子,我们只分析后两个算子的源码:

// src/graph/executor/query/IndexScanExecutor.cpp

folly::Future<Status> IndexScanExecutor::execute() {
  return indexScan();
}

folly::Future<Status> IndexScanExecutor::indexScan() {
  // 拿到和 storage 交互的 storageClient
  StorageClient *storageClient = qctx_->getStorageClient();
  auto *lookup = asNode<IndexScan>(node());
  if (lookup->isEmptyResultSet()) {
    DataSet dataSet({"dummy"});
    return finish(ResultBuilder().value(Value(std::move(dataSet))).build());
  }

  const auto &ictxs = lookup->queryContext();
  auto iter = std::find_if(
      ictxs.begin(), ictxs.end(), [](auto &ictx) { return !ictx.index_id_ref().is_set(); });
  if (ictxs.empty() || iter != ictxs.end()) {
    return Status::Error("There is no index to use at runtime");
  }
  // Req 的公共请求参数
  StorageClient::CommonRequestParam param(lookup->space(),
                                          qctx()->rctx()->session()->id(),
                                          qctx()->plan()->id(),
                                          qctx()->plan()->isProfileEnabled());
  return storageClient
      ->lookupIndex(param,
                    ictxs,
                    lookup->isEdge(), // 是不是边类型
                    lookup->schemaId(), // schemaId
                    lookup->returnColumns(), // resp 返回的列数据
                    lookup->orderBy(), // 是否带有 orderBy,为了下推 TopN 算子
                    lookup->limit(qctx_)) // 是否带有 limit,为了下推 limit 算子
      .via(runner())
      .thenValue([this](StorageRpcResponse<LookupIndexResp> &&rpcResp) {
        addStats(rpcResp, otherStats_);
        return handleResp(std::move(rpcResp));
      });
}

// TODO(shylock) merge the handler with GetProp
template <typename Resp>
Status IndexScanExecutor::handleResp(storage::StorageRpcResponse<Resp> &&rpcResp) {
  auto completeness = handleCompleteness(rpcResp, FLAGS_accept_partial_success);
  if (!completeness.ok()) {
    return std::move(completeness).status();
  }
  auto state = std::move(completeness).value();
  nebula::DataSet v;
  // 把每一个 resp 拉出来处理,因为我们 storage 是可以分布式部署的
  // 这里有一个问题重点提出一下,结果集会维护在 ectx_ 中,供 ProjectExecutor 一会取
  for (auto &resp : rpcResp.responses()) {
    if (resp.data_ref().has_value()) {
      nebula::DataSet &data = *resp.data_ref();
      // TODO: convert the column name to alias.
      if (v.colNames.empty()) {
        v.colNames = data.colNames;
      }
      v.rows.insert(v.rows.end(), data.rows.begin(), data.rows.end());
    } else {
      state = Result::State::kPartialSuccess;
    }
  }
  if (!node()->colNames().empty()) {
    DCHECK_EQ(node()->colNames().size(), v.colNames.size());
    v.colNames = node()->colNames();
  }
  return finish(
      ResultBuilder().value(std::move(v)).iter(Iterator::Kind::kProp).state(state).build());
}

// src/graph/executor/query/ProjectExecutor.cpp

folly::Future<Status> ProjectExecutor::execute() {
  SCOPED_TIMER(&execTime_);
  auto *project = asNode<Project>(node());
  // 刚才说从 storage 获取的结果数据都放在 ectx_ 里面了
  auto iter = ectx_->getResult(project->inputVar()).iter();
  DCHECK(!!iter);
  QueryExpressionContext ctx(ectx_);

  // 默认 max_job_size 是 1,我们先看 if 分支,看 handleJob 到底干了啥
  if (FLAGS_max_job_size <= 1) {
    auto ds = handleJob(0, iter->size(), iter.get());
    return finish(ResultBuilder().value(Value(std::move(ds))).build());
  } else {
    DataSet ds;
    ds.colNames = project->colNames();
    ds.rows.reserve(iter->size());

    auto scatter = [this](size_t begin, size_t end, Iterator *tmpIter) -> StatusOr<DataSet> {
      return handleJob(begin, end, tmpIter);
    };

    auto gather = [this, result = std::move(ds)](auto &&results) mutable {
      for (auto &r : results) {
        auto &&rows = std::move(r).value();
        result.rows.insert(result.rows.end(),
                           std::make_move_iterator(rows.begin()),
                           std::make_move_iterator(rows.end()));
      }
      finish(ResultBuilder().value(Value(std::move(result))).build());
      return Status::OK();
    };

    return runMultiJobs(std::move(scatter), std::move(gather), iter.get());
  }
}

DataSet ProjectExecutor::handleJob(size_t begin, size_t end, Iterator *iter) {
  auto *project = asNode<Project>(node());
  auto columns = project->columns()->clone();
  DataSet ds;
  ds.colNames = project->colNames();
  QueryExpressionContext ctx(qctx()->ectx());
  ds.rows.reserve(end - begin);
  // 从头到尾遍历数据,去除关心的数据
  for (; iter->valid() && begin++ < end; iter->next()) {
    Row row;
    for (auto &col : columns->columns()) {
      Value val = col->expr()->eval(ctx(iter)); // 这个是表达式的 eval 执行,对于我们 id(vertex) 对应的是:src/common/function/FunctionManager.cpp:1832 auto &attr = functions_["id"];
      row.values.emplace_back(std::move(val)); // 这个对于 id(vertex) 的 val 来说,就是 vertex.id
    ds.rows.emplace_back(std::move(row));
  }
  return ds;
}

11. 数据结果显示

我们通过物理执行算子,把数据放在最后一个算子的 ProjectExecutor 的 ectx_(ExecutionContext) 里面了。我们接下来就是要知道,哪个流程把这个执行上下文的数据取走了:给客户端的 resp 填充这些数据,最终显示到我们的 nebula-console,或者其他客户端中。Its time to go back to 章节 2. 的注释 8:

// 请看第二步的注释 8:
this->onFinish(); // 8. 这里是干完了所有物理执行计划,然后开始处理客户端 resp 了

// 我们进到 onFinish 函数看下:
void QueryInstance::onFinish() {
  auto rctx = qctx()->rctx();
  VLOG(1) << "Finish query: " << rctx->query();
  auto &spaceName = rctx->session()->space().name;
  rctx->resp().spaceName = std::make_unique<std::string>(spaceName);
  // 这个函数做了填充结果数据到 resp 中
  fillRespData(&rctx->resp());

  auto latency = rctx->duration().elapsedInUSec();
  rctx->resp().latencyInUs = latency;
  addSlowQueryStats(latency, spaceName);
  rctx->finish();

  rctx->session()->deleteQuery(qctx_.get());
  // The `QueryInstance' is the root node holding all resources during the
  // execution. When the whole query process is done, it's safe to release this
  // object, as long as no other contexts have chances to access these resources
  // later on, e.g. previously launched uncompleted async sub-tasks, EVEN on
  // failures.
  delete this;
}

 // 把执行的数据从 ectx 中取出,然后填充到执行 resp 中,这次语句执行就结束了
// Get result from query context and fill the response
void QueryInstance::fillRespData(ExecutionResponse *resp) {
  auto ectx = DCHECK_NOTNULL(qctx_->ectx());
  auto plan = DCHECK_NOTNULL(qctx_->plan());
  const auto &name = plan->root()->outputVar();
  if (!ectx->exist(name)) return;

  auto &&value = ectx->moveValue(name);
  if (!value.isDataSet()) return;

  // Fill dataset
  auto result = value.moveDataSet();
  if (!result.colNames.empty()) {
    // 结果填充
    resp->data = std::make_unique<DataSet>(std::move(result));
  } else {
    // 如果有错误,错误码和错误信息
    resp->errorCode = ErrorCode::E_EXECUTION_ERROR;
    resp->errorMsg = std::make_unique<std::string>("Internal error: empty column name list");
    LOG(ERROR) << "Empty column name list";
  }
}

小结

目前为止,我们把 LOOKUP 是怎么在内核中执行的一生的源码解读就做完了。有很多细节没有展开,后续的文章中我们将不断展开。其实,对于任意一个语句,基本执行的流程和 LOOKUP 的一生都类似,其中有不同的地方就是额外的算子不同,算子之间处理的逻辑不同。而且,这次我们没有打开 Storage 服务的代码,可以作为一个遗留项。

祝大家都可以在 NebulaGraph 图数据库的源码世界里面翱翔,欢迎大家和我来进行交流,学习 Wey Gu 的方式,给大家留一个微信联系方式:echo TWlsaXR0bGVUaW1l | base64 -d Call me.


谢谢你读完本文 (///▽///)

要来近距离体验一把图数据库吗?现在可以用用 NebulaGraph Cloud 来搭建自己的图数据系统哟,快来节省大量的部署安装时间来搞定业务吧~ NebulaGraph 阿里云计算巢现 30 天免费使用中,点击链接来用用图数据库吧~

想看源码的小伙伴可以前往 GitHub 阅读、使用、(з)-☆ star 它 -> GitHub;和其他的 NebulaGraph 用户一起交流图数据库技术和应用技能,留下「你的名片」一起玩耍呢~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/140843.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

实现SQLSERVER 调用 C# 代码

简单例子 首先写一段简单的 C# 代码&#xff0c;然后把它编译成 dll。 namespace Bussiness {public class UserFunctions{public static string UserLogin(string username, string password){var random new Random();var isSuccess random.Next() % 2 0;return isSucce…

【漏洞复现】钉钉rce反弹shell

文章目录 一、漏洞描述二、漏洞原理三、影响版本四、复现过程0.环境说明1.msf 生成shellcode2.msf开启监听3.将生成的shellcode替换原shellcode4.开启web服务&#xff0c;并上传poc文件&#xff0c;构造poc5.从钉钉发送poc给受害者6.受害者点击即会触发漏洞&#xff0c;在msf监…

前端菜鸟如何快速开发个人产品

我是车辙&#xff0c;我的掘金小册《SkyWalking&#xff1a;应用监控和链路跟踪》已经上线啦&#xff0c;这是我的第一本电子书&#xff0c;欢迎大家订阅。 大家好&#xff0c;我是车辙。在完成小册后的一段时间&#xff0c;我突然想开发一款个人H5产品。在起初有这样想法的时候…

长、中、短视频“再战”微短剧

配图来自Canva可画 近年来&#xff0c;流量焦虑一直伴随着国内的视频平台&#xff0c;比如&#xff0c;制作精良的长视频由于剧集冗长正在被“追求效率”的年轻人抛弃&#xff1b;高歌猛进的短视频也因为无法承受太多有价值的内容而面临增长瓶颈。在此背景下&#xff0c;制作门…

中国工业以太网交换机市场分析

一、我国以太网交换机市场&#xff1a; 工业以太网交换机&#xff08;IndustrialEthernetSwitches&#xff09;是能够满足工业现场需要&#xff0c;技术层面与商业以太网交换机适配&#xff0c;而实时通信、可靠性、稳定性、安全性、环境适应性等各个方面规定高于商业以太网交…

玩转X3派,健身游戏两不误

一、准备工作 Windows电脑端安装拳皇游戏 &#xff08;因为是按键模拟&#xff0c;理论上只要是按键控制的游戏都可以玩&#xff0c;本文用MAME模拟器作例子&#xff0c;下载MAME&#xff1a;MAMEdev.org | Home of The MAME Project&#xff09; Windows可直接从该目录下载&…

常用的PHP伪协议大全

目录 常见文件包含函数 常见协议 php:// php://filter&#xff08;本地磁盘文件进行读取&#xff09; php://input &#xff08;读取POST数据&#xff09; file:// data:// 常见文件包含函数 函数功能include()代码执行到 include() 函数时将文件包含include_once()当…

如何操作工单系统

如何自定义工单字段 点击【工单管理】 > 点击【工单自定义字段】。选择【添加新的自定义字段】&#xff0c;即可进行字段编辑。管理人员可以在此页面自行添加要在工单上显示的内容&#xff0c;更改工单的格式&#xff0c;使其更满足于自身实际操作需要。管理员可选择添加单…

从“少林寺”毕业后,我当上了开源社区“区长”

本期名人堂我们有幸邀请到了Alluxio创始成员兼开源社区副总裁范斌先生。范斌先生讲述了自己的求学、工作、加入开源社区的经历&#xff0c;以及对未来十年数据编排发展的展望&#xff0c;和对开发贡献者的一些建议。 问题 1&#xff1a;范斌老师您好&#xff0c;很荣幸有机会采…

归并排序与逆序对数量模板题

归并排序 归并排序模板题 给定你一个长度为 n 的整数数列。 请你使用归并排序对这个数列按照从小到大进行排序。 并将排好序的数列按顺序输出。 输入格式 输入共两行&#xff0c;第一行包含整数 n。 第二行包含 n 个整数&#xff08;所有整数均在 1∼109 范围内&#xff…

DCG开年大戏上演“拖字诀”,爆雷恐迎加密至暗时刻

文/章鱼哥出品/陀螺财经币圈无新事&#xff0c;新年伊始&#xff0c;DCG被Gemini催债引发爆雷传言的事情一如FTX、SBF爆雷当初 &#xff0c;DCG是否会步他们的后尘&#xff0c;目前还不得而知&#xff0c;但这开年一记重锤&#xff0c;给2023的加密领域开了个坏头。祸起Gemini …

【王道·计算机网络】第一章 计算机网络基本体系【未完】

1. 计算机网络概述 1. 概念 计算机网络是一个将分散的、具有独立功能的计算机系统&#xff0c;通过通信设备与线路连接起来&#xff0c;由功能完善的软件实现资源共享和信息传递的系统。简而言之&#xff0c;计算机网络就是一些互联的(通过通信链路互联互通)、自治的计算机系…

【4.1】Ribbon负载均衡原理

【4.1】Ribbon负载均衡1 Ribbon--负载均衡原理1.1 负载均衡流程1.2 源码分析&#xff08;debug&#xff09;2 总结1 Ribbon–负载均衡原理 1.1 负载均衡流程 图中的地址是真实可用的地址吗&#xff1f; 显然不是。 这样一个请求实际上是无法直接到达user-service的。 因此中间…

求一款免费好用的进销存管理软件?

求一款免费好用的进销存管理软件&#xff1f; 免费好用的进销存管理软件&#xff0c;“免费”一词对用户最具吸引力。 很多的小微企业在企业发展的过程都会选择免费的进销存管理软件来协助自己运营。都会希望&#xff0c;花最低的成本&#xff0c;实现最大的利益。 进销存管…

牛客网数据库sql实战剖析(一)

牛客网SQL实战 1.查找最晚入职员工的所有信息 思路&#xff1a;找出入职时间最大的时间&#xff0c;作为子查询条件进一步查找到该员工的其它信息。 SELECT * FROM employees WHERE hire_date (SELECT MAX(hire_date)FROM employees );这里不能用order by的方式&#xff0c…

私募证券基金动态-12月报

成交量&#xff1a;2022全年日均9,277.25亿元12月A股两市日均成交7,875.28亿元&#xff0c;环比下降15.15%、同比下降26.83%&#xff0c;是2022年继9月以后成交量次低的月份。2022年全年&#xff0c;日均成交量9,277.25亿元。管理人&#xff1a;新提交备案29家&#xff0c;备案…

【北京理工大学-Python 数据分析-1.2-NumPy数据存储与函数】

一、数据CSV文件的存取 CSV文件&#xff08;Comma-Separated Value,逗号分隔值&#xff09;是一种常见的文件格式&#xff0c;用来存储批量数据。 如常见的数据存储为CSV后 NumPy中有两个函数可以写入CSV格式&#xff0c;并从CSV文件中读取数据。 CSV文件的存储 np.savetxt…

mysql中的rand()函数简介以及和其他函数组合使用实践

一、本文结构简介 本文首先介绍rand()的基本使用 其次分别介绍round与rand的合用、ceiling与rand的合用、floor与rand的合用、md5与rand的合用 二、rand()的基本使用 rand()是系统自带的获取随机数的函数 (1)无参数&#xff1a;产生获取[0,1)之间的float型的数字 (2)有参数&a…

【jQuery】写一个电梯导航

今天大概是跟着pink老师学习JS的第八天&#xff0c;看了有410章了。 视频教程&#xff1a;pink JS 今天早上跟着老师做了一个电梯导航&#xff1a; 还是那个熟悉的品优购项目。。。 之后我打算自己练习一下&#xff0c;然后就出现bug了。 <div class"tuijian"&…

CO13 订单取消确认报错:“在为订单XXXX 确定实际成本中出错”处理分析

用户再操作CO13时报了一个错误&#xff1a;在为订单XXXX 确定实际成本中出错。 看到这个错误以为是财务同时没有发布成本导致的。然后我也操作了一下发现了一些过账中的错误。 原来是冲销这个工单的账期是在前几个月&#xff0c;而那个月已经关账期了&#xff0c;所以报错。 …