神经网络算法 —— 一文搞懂Transformer !!

news2024/10/6 5:59:40

文章目录

前言

一、Transformer的本质

1. Transformer架构

2. Encoder-Decoder(编码器-解码器)

二、Transformer的原理

1. Multi-Head Attention(多头自注意力)

2. Scaled Dot-Product Attention(缩放点积注意力)

三、Transformer架构改进

1. BERT

2. GPT


前言

本文将从 Transformer的本质、Transformer的原理 和 Transformer架构改进三个方面,搞懂Transformer。


一、Transformer的本质

1. Transformer架构

主要由输入部分(输入输出嵌入与位置编码)、多层编码器、多层解码器以及输出部分(输出线性层与Softmax)四大部分组成。

Transformer架构

(1)输入部分

  • 源文本嵌入层:将源文本中的词汇数字表示转换为向量表示,捕捉词汇间的关系。
  • 位置编码层:为输入序列的每个位置生成位置向量,以便模型能够理解序列中的位置信息。
  • 目标文本嵌入层(在解码器中使用):将目标文本中的词汇数字表示转换为向量表示。

(2)编码器部分

  • 由N个编码器层堆叠而成。
  • 每个编码器层由两个子层连接结构组成:第一个子层是多头自注意力子层,第二个子层是一个前馈全连接子层。每个子层后都接有一个规范化层和一个残差连接。

(3)解码器部分

  • 由N个解码器层堆叠而成。
  • 每个解码器层由三个子层连接结构组成:第一个子层是一个带掩码的多头自注意力子层,第二个子层是一个多头注意力子层(编码器到解码器),第三个子层是一个前馈全连接层。每个子层后都接有一个规范化层和一个残差连接。

(4)输出部分

  • 线性层:将解码器输出的向量转换为最终的输出维度。
  • Softmax层:将线性层的输出转换为概率分布,以便进行最终的预测。

2. Encoder-Decoder(编码器-解码器)

左边是N个编码器,右边是N个解码器,Transformer中的N为6

Encoder-Decoder (编码器-解码器)

(1)Encoder 编码器

  • Transformer中的编码器部分一共6个相同的编码器层组成。
  • 每个编码器层都有两个子层,即多头自注意力层(Multi-Head Attention)层和逐位置的前馈神经网络(Position-wise Feed-Forward Network)。在每个子层后面都有残差连接(图中的虚线)和层归一化(LayerNorm)操作,二者合起来称为 Add&Norm 操作。

Encoder(编码器)架构

(2)Decoder 解码器

Transformer中的解码器部分同样有6个相同的解码器层组成。

每个解码器层都有三个子层,掩码自注意力层(Masked Self-Attention)、Encoder-Decoder自注意力层、逐位置的前馈神经网络。同样,在每个子层后面都有残差连接(图中的虚线)和层归一化(LayerNorm)操作,二者合起来称为 Add&Norm操作。

Decoder(解码器)架构

二、Transformer的原理

Transformer工作原理

1. Multi-Head Attention(多头自注意力)

它允许模型同时关注来自不同位置的信息。通过分割原始的输入向量到多个头(head),每个头都能独立地学习不同的注意力权重,从而增强模型对输入序列中的不同部分的关注能力。

Multi-Head Attention(多头自注意力)

(1)输入线性变换

对于输入的Query(查询)、Key(键)和Value(值)向量,首先通过线性变换将它们映射到不同的子空间。这些线性变换的参数是模型需要学习的。

(2)分割多头

经过线性变换后,Query、Key和Value向量被分割成多个头。每个头部都会独立地进行注意力计算。

(3)缩放点积注意力

在每个头内部,使用缩放点积注意力来计算Query和Key之间的注意力分数。这个分数决定了在生成输出时,模型应该关注Value向量的部分。

(4)注意力权重应用

将计算出的注意力权重应用于Value向量,得到加权的中间输出。这个过程可以理解为根据注意力权重对输入信息进行筛选和聚焦。

(5)拼接和线性变换

将所有头的加权输出拼接在一起,然后通过一个线性变换得到最终的Multi-Head Attention输出。

2. Scaled Dot-Product Attention(缩放点积注意力)

它是Transformer模型中的多头注意力机制的一个关键组成部分。

Scaled Dot-Product Attention(缩放点积注意力)

(1)Query、Key和Value矩阵

Query矩阵(Q):表示当前的关注点或信息需求,用于与Key矩阵进行匹配。

Key矩阵(K):包含输入序列中各个位置的标识信息,用于被Query矩阵查询匹配。

Value矩阵(V):存储了与Key矩阵相对应的实际值或信息内容,当Query与某个Key匹配时,相应的Value将被用来计算输出。

(2)点积计算

通过计算Query矩阵和Key矩阵之间的点积(即对应元素相乘后求和),来衡量Query与每个Key之间的相似度或匹配程度。

(3)缩放因子

由于点积操作的结果可能非常大,尤其是在输入维度较高的情况下,这可能导致softmax函数在计算注意力权重时进入饱和区。为了避免这个问题,缩放点积注意力引入了一个缩放因子,通常是输入维度的平方根。点积结果除以这个缩放因子,可以使得softmax函数的输入保持在一个合理的范围内。

(4)Softmax函数

将缩放后的点积结果输入到softmax函数中,计算每个Key相对于Query的注意力权重。Softmax函数将原始得分转换为概率分布,使得所有的Key的注意力权重之和为1。

(5)加权求和

使用计算出的注意力权重对Value矩阵进行加权求和,得到最终的输出。这个过程根据注意力权重的大小,将更多的关注放在与Query更匹配的Value上。

三、Transformer架构改进

1. BERT

BERT 是一种基于Transformer的预训练语言模型,它的最大创新之处在于引入了 双向Transformer编码器 ,这使得模型可以同时考虑输入序列的前后上下文信息。

BERT架构

(1)输入层(Embedding)

Token Embeddings:将单词或字词转换为固定维度的向量。

Segment Embeddings:用于区分句子对中的不同句子。

Position Embeddings:由于Transformer模型本身不具备处理序列顺序的能力,所有需要加入位置嵌入来提供序列中单词的位置信息。

(2)编码层(Transformer Encoder)

BERT模型使用双向Transformer编码器进行编码。

(3)输出层(Pre-trained Task-specific Layers)

MLM输出层:用于预测被掩码(masked)的单词。在训练阶段,模型会随机遮盖输入序列中的部分单词,并尝试根据上下文预测这些单词。

NSP输出层:用于判断两个句子是否为连续的句子对。在训练阶段,模型会接收成对的句子作为输入,并尝试预测第二个句子是否是第一个句子的后续句子。

2. GPT

GPT 也是一种基于Transformer的预训练语言模型,它的最大创新之处在于使用了 单向Transformer编码器,这使得模型可以更好地捕捉输入序列的上下文信息。

(1)输入层(Input Embedding)

将输入的单词或符号转换为固定维度的向量表示。

可以包括词嵌入、位置嵌入等,以提供单词的语义信息和位置信息。

(2)编码层(Transformer Encoder)

GPT模型使用单向Transformer编码器进行编码和生成。

(3)输出层(Output Linear and Softmax)

线性输出层将最后一个Transformer Decoder Block的输出转换为词汇表大小的向量。

Softmax函数将输出向量转换为概率分布,以便进行词汇选择或生成下一个单词。

来源:架构师带你玩转AI

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1400562.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

坦克大战游戏代码

坦克大战游戏 主函数战场面板开始界面坦克父类敌方坦克我方坦克子弹爆炸效果数据存盘及恢复图片 主函数 package cn.wenxiao.release9;import java.awt.event.ActionEvent; import java.awt.event.ActionListener;import javax.swing.JFrame; import javax.swing.JMenu; impor…

2024年【金属非金属矿山(地下矿山)安全管理人员】证考试及金属非金属矿山(地下矿山)安全管理人员模拟考试题库

题库来源:安全生产模拟考试一点通公众号小程序 2024年【金属非金属矿山(地下矿山)安全管理人员】证考试及金属非金属矿山(地下矿山)安全管理人员模拟考试题库,包含金属非金属矿山(地下矿山&…

RabbitMQ-消息延迟

一、死信交换机 1、描述 一个队列接收到的消息有过期时间,消息过期之后,如果配置有死信队列,消息就会进去死信队列。 2、图解 3、过程 当生产者将消息发送到exchange1,然后交换机将消息路由到队列queue1,但是队列que…

探索指针的奇妙世界,程序中的魔法箭头(上)

目录 一.指针是什么二.指针和指针类型1.指针加减整数2.指针的解引用 三.野指针1.野指针形成的原因(1)指针未初始化指针越界访问 2.如何规避野指针(1)指针初始化(2)小心指针越界(3)指…

SpringSecurity+JWT前后端分离架构登录认证

目录 1. 数据库设计 2. 代码设计 登录认证过滤器 认证成功处理器AuthenticationSuccessHandler 认证失败处理器AuthenticationFailureHandler AuthenticationEntryPoint配置 AccessDeniedHandler配置 UserDetailsService配置 Token校验过滤器 登录认证过滤器接口配置…

理解PCIE设备透传

PCIE设备透传解决的是使虚拟机直接访问PCIE设备的技术,通常情况下,为了使虚拟机能够访问Hypervisor上的资源,QEMU,KVMTOOL等虚拟机工具提供了"trap and emulate", Virtio半虚拟化等机制实现。但是这些实现都…

用通俗易懂的方式讲解:使用 Langchain 和 Hugging Face ,轻松实现大模型 RAG 用法

检索增强生成(RAG)是一种与预训练的大型语言模型(LLM)和自己的数据一起工作的模式,用于生成响应。 现在我将向大家介绍在代码中实现 RAG 的过程。让我们开始使用 Langchain 和 Hugging Face 实现 RAG! 文章…

matlab appdesigner系列-常用14-树(复选框)

之前系列常用9,为单个复选框。树,就是多个复选框形成的选项组 示例:列举湖北省的几个城市 湖北省 武汉 宜昌 襄阳 荆州 1)将树(复选框)拖拽到画布上,方式1就是:文字可以在右侧…

【线上问题】CompletableFuture与线程池使用不当导致服务整个挂掉

Informal Essay By English It is always a pleasure to learn 背景 在某一个风和日丽的早上,小组同事说昨晚线上服务有20分钟左右的不可用,当时内心一紧,不会是我写的代码有bug导致的吧👀,我正了正心态&#xff0c…

[小程序]样式与配置

一、外部样式导入 使用import加外部样式表的相对路径并以 ; 表示语句结束。 import "common.wxss"; 二、全局样式和局部样式 全局样式位于app.wxss中,会作用于整个项目中所有页面中。 局部样式位于对应的wxss文件中,仅作用于当前页面&#x…

WebDriverWait太强大

selenium webdriver及wait 1 implicitly包打天下2 Linkedin无法登录返回值很乱,怎么破? 1 implicitly包打天下 有了implicitly之后,基本上不再关注网速之类的影响。 self.driver.implicitly_wait(511)2 Linkedin无法登录返回值很乱&#xf…

Vulnhub-TECH_SUPP0RT: 1渗透

文章目录 一、前言1、靶机ip配置2、渗透目标3、渗透概括 开始实战一、信息获取二、使用smb服务获取信息三、密码破解四、获取webshell五、反弹shell六、web配置文件获取信息七、提权 一、前言 由于在做靶机的时候,涉及到的渗透思路是非常的广泛,所以在写…

ad18报错:clearance constraint

最常见的报错,直译过来的意思:间隙约束。也就是约束PCB中的电气间距,比如阻容各类元件的焊盘间距小于规则中的设定值,即报警。 Altium Designer 中的 Clearance Constraint 错误如何修改-CSDN博客 【Altium Designer21】DRC规则…

Vulnhub靶机:FunBox 2

一、介绍 运行环境:Virtualbox 攻击机:kali(10.0.2.15) 靶机:FunBox 2(10.0.2.27) 目标:获取靶机root权限和flag 靶机下载地址:https://download.vulnhub.com/funbo…

决策树的分类

概念 决策树是一种树形结构 树中每个内部节点表示一个特征上的判断,每个分支代表一个判断结果的输出,每个叶子节点代表一种分类结果 决策树的建立过程 1.特征选择:选取有较强分类能力的特征。 2.决策树生成:根据选择的特征生…

【代码随想录07】344.反转字符串 541. 反转字符串II 05.替换空格 151.翻转字符串里的单词 55. 右旋转字符串

目录 344. 反转字符串题目描述做题思路参考代码 541. 反转字符串 II题目描述参考代码 05. 替换数字题目描述参考代码 151. 反转字符串中的单词题目描述参考代码 55. 右旋转字符串题目描述参考代码 344. 反转字符串 题目描述 编写一个函数,其作用是将输入的字符串反…

HTML以及CSS相关知识总结(一)

近日就开始回顾html和css相关知识啦,并且会学习html5和css3的新知识,以下是我对记忆不太深刻的地方以及新知识点的总结: Web标准: 结构:用于对网页元素进行整理和分类,即HTML 表现:用于设置网页…

CentOS Linux操作系统源码安装最新Redis版本,使用JSON数据类型踩入新坑

最近有空查阅了redis官网,发现redis数据类型不止Strings、Lists、Sets、Hashes、Sorted sets,还多了几种,决定先试用下JSON数据类型 1、安装Redis软件 JSON数据类型,对Redis版本有要求,需要大于4.0版本。下图是华为云…

Transformer|1.4 CNN遇到的问题与窘境

文章目录 CNN遇到的问题与窘境transformer 的优势 CNN遇到的问题与窘境 判断一个人是否为美人,既要看她各个五官,也要看她各个五官占的比例和协调。 既要照顾好局部信息,也要照顾好全局信息。 局部信息用小的感受野进行感受,而全局…

【操作系统和计网从入门到深入】(六)进程间通信

前言 这个专栏其实是博主在复习操作系统和计算机网络时候的笔记,所以如果是博主比较熟悉的知识点,博主可能就直接跳过了,但是所有重要的知识点,在这个专栏里面都会提到!而且我也一定会保证这个专栏知识点的完整性&…