助力工业焊缝质量检测,基于YOLOv8【n/s/m/l/x】全系列参数模型开发构建工业焊接场景下钢材管道焊缝质量检测识别分析系统

news2025/1/14 0:47:59

焊接是一个不陌生但是对于开发来说相对小众的场景,在我们前面的博文开发实践中也有一些相关的实践,感兴趣的话可以自行移步阅读即可:

《轻量级模型YOLOv5-Lite基于自己的数据集【焊接质量检测】从零构建模型超详细教程》

《基于DeepLabV3Plus实现焊缝分割识别系统》

《基于官方YOLOv4-u5【yolov5风格实现】开发构建目标检测模型超详细实战教程【以自建缺陷检测数据集为例】》

《探索工业智能检测,基于轻量级YOLOv8开发构建焊接缺陷检测识别系统》

《探索工业智能检测,基于轻量级YOLOv5s开发构建焊接缺陷检测识别系统》

《助力工业焊缝质量检测,YOLOv7【tiny/l/x】不同系列参数模型开发构建工业焊接场景下钢材管道焊缝质量检测识别分析系统》

《助力工业焊缝质量检测,YOLOv3开发构建工业焊接场景下钢材管道焊缝质量检测识别分析系统》

感兴趣的话可以自行移步阅读。

本文的主要目的是想要以焊缝场景为切入点,基于YOLOv8全系列五个不同参数量级的模型来开发构建工业焊缝场景下焊缝质量检测识别系统,首先看下实例效果:

如果对YOLOv8开发构建自己的目标检测项目有疑问的可以看下面的文章,如下所示:

《基于YOLOv8开发构建目标检测模型超详细教程【以焊缝质量检测数据场景为例】》

非常详细的开发实践教程。本文这里就不再展开了,因为从YOLOv8开始变成了一个安装包的形式,整体跟v5和v7的使用差异还是比较大的。

YOLOv8核心特性和改动如下:
1、提供了一个全新的SOTA模型(state-of-the-art model),包括 P5 640 和 P6 1280 分辨率的目标检测网络和基于YOLACT的实例分割模型。和 YOLOv5 一样,基于缩放系数也提供了 N/S/M/L/X 尺度的不同大小模型,用于满足不同场景需求
2、骨干网络和 Neck 部分可能参考了 YOLOv7 ELAN 设计思想,将 YOLOv5 的 C3 结构换成了梯度流更丰富的 C2f 结构,并对不同尺度模型调整了不同的通道数,属于对模型结构精心微调,不再是一套参数应用所有模型,大幅提升了模型性能。
3、Head 部分相比 YOLOv5 改动较大,换成了目前主流的解耦头结构,将分类和检测头分离,同时也从Anchor-Based 换成了 Anchor-Free
4、Loss 计算方面采用了TaskAlignedAssigner正样本分配策略,并引入了Distribution Focal Loss
5、训练的数据增强部分引入了 YOLOX 中的最后 10 epoch 关闭 Mosiac 增强的操作,可以有效地提升精度

简单看下实例数据情况:

官方项目地址在这里,如下所示:

目前已经收获超过1.7w的star量了。官方提供的预训练模型如下所示:

是基于Open Image V7数据集构建的,可以根据自己的需求进行选择使用即可。

YOLOv8的定位不仅仅是目标检测,而是性能强大全面的工具库,故而在任务类型上同时支持:姿态估计、检测、分类、分割、跟踪多种类型,可以根据自己的需要进行选择使用,这里就不再详细展开了。

简单的实例实现如下所示:

from ultralytics import YOLO
 
# yolov8n
model = YOLO('yolov8n.yaml').load('yolov8n.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8s
model = YOLO('yolov8s.yaml').load('yolov8s.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8m
model = YOLO('yolov8m.yaml').load('yolov8m.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8l
model = YOLO('yolov8l.yaml').load('yolov8l.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)
 
 
# yolov8x
model = YOLO('yolov8x.yaml').load('yolov8x.pt')  # build from YAML and transfer weights
model.train(data='data/self.yaml', epochs=100, imgsz=640)

这里我们依次选择n、s、m、l和x五款不同参数量级的模型来进行开发。

这里给出yolov8的模型文件如下:

# Parameters
nc: 39   # number of classes
scales: # model compound scaling constants, i.e. 'model=yolov8n.yaml' will call yolov8.yaml with scale 'n'
  # [depth, width, max_channels]
  n: [0.33, 0.25, 1024]  # YOLOv8n summary: 225 layers,  3157200 parameters,  3157184 gradients,   8.9 GFLOPs
  s: [0.33, 0.50, 1024]  # YOLOv8s summary: 225 layers, 11166560 parameters, 11166544 gradients,  28.8 GFLOPs
  m: [0.67, 0.75, 768]   # YOLOv8m summary: 295 layers, 25902640 parameters, 25902624 gradients,  79.3 GFLOPs
  l: [1.00, 1.00, 512]   # YOLOv8l summary: 365 layers, 43691520 parameters, 43691504 gradients, 165.7 GFLOPs
  x: [1.00, 1.25, 512]   # YOLOv8x summary: 365 layers, 68229648 parameters, 68229632 gradients, 258.5 GFLOPs
 
# YOLOv8.0n backbone
backbone:
  # [from, repeats, module, args]
  - [-1, 1, Conv, [64, 3, 2]]  # 0-P1/2
  - [-1, 1, Conv, [128, 3, 2]]  # 1-P2/4
  - [-1, 3, C2f, [128, True]]
  - [-1, 1, Conv, [256, 3, 2]]  # 3-P3/8
  - [-1, 6, C2f, [256, True]]
  - [-1, 1, Conv, [512, 3, 2]]  # 5-P4/16
  - [-1, 6, C2f, [512, True]]
  - [-1, 1, Conv, [1024, 3, 2]]  # 7-P5/32
  - [-1, 3, C2f, [1024, True]]
  - [-1, 1, SPPF, [1024, 5]]  # 9
 
# YOLOv8.0n head
head:
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 6], 1, Concat, [1]]  # cat backbone P4
  - [-1, 3, C2f, [512]]  # 12
 
  - [-1, 1, nn.Upsample, [None, 2, 'nearest']]
  - [[-1, 4], 1, Concat, [1]]  # cat backbone P3
  - [-1, 3, C2f, [256]]  # 15 (P3/8-small)
 
  - [-1, 1, Conv, [256, 3, 2]]
  - [[-1, 12], 1, Concat, [1]]  # cat head P4
  - [-1, 3, C2f, [512]]  # 18 (P4/16-medium)
 
  - [-1, 1, Conv, [512, 3, 2]]
  - [[-1, 9], 1, Concat, [1]]  # cat head P5
  - [-1, 3, C2f, [1024]]  # 21 (P5/32-large)
 
  - [[15, 18, 21], 1, Detect, [nc]]  # Detect(P3, P4, P5)

囊括了五款不同参数量级的模型。在训练结算保持相同的参数设置,等待训练完成后我们横向对比可视化来整体对比分析。

【Precision曲线】
精确率曲线(Precision-Recall Curve)是一种用于评估二分类模型在不同阈值下的精确率性能的可视化工具。它通过绘制不同阈值下的精确率和召回率之间的关系图来帮助我们了解模型在不同阈值下的表现。
精确率(Precision)是指被正确预测为正例的样本数占所有预测为正例的样本数的比例。召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。
绘制精确率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率和召回率。
将每个阈值下的精确率和召回率绘制在同一个图表上,形成精确率曲线。
根据精确率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察精确率曲线,我们可以根据需求确定最佳的阈值,以平衡精确率和召回率。较高的精确率意味着较少的误报,而较高的召回率则表示较少的漏报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
精确率曲线通常与召回率曲线(Recall Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【Recall曲线】
召回率曲线(Recall Curve)是一种用于评估二分类模型在不同阈值下的召回率性能的可视化工具。它通过绘制不同阈值下的召回率和对应的精确率之间的关系图来帮助我们了解模型在不同阈值下的表现。
召回率(Recall)是指被正确预测为正例的样本数占所有实际为正例的样本数的比例。召回率也被称为灵敏度(Sensitivity)或真正例率(True Positive Rate)。
绘制召回率曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的召回率和对应的精确率。
将每个阈值下的召回率和精确率绘制在同一个图表上,形成召回率曲线。
根据召回率曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
通过观察召回率曲线,我们可以根据需求确定最佳的阈值,以平衡召回率和精确率。较高的召回率表示较少的漏报,而较高的精确率意味着较少的误报。根据具体的业务需求和成本权衡,可以在曲线上选择合适的操作点或阈值。
召回率曲线通常与精确率曲线(Precision Curve)一起使用,以提供更全面的分类器性能分析,并帮助评估和比较不同模型的性能。

【F1值曲线】
F1值曲线是一种用于评估二分类模型在不同阈值下的性能的可视化工具。它通过绘制不同阈值下的精确率(Precision)、召回率(Recall)和F1分数的关系图来帮助我们理解模型的整体性能。
F1分数是精确率和召回率的调和平均值,它综合考虑了两者的性能指标。F1值曲线可以帮助我们确定在不同精确率和召回率之间找到一个平衡点,以选择最佳的阈值。
绘制F1值曲线的步骤如下:
使用不同的阈值将预测概率转换为二进制类别标签。通常,当预测概率大于阈值时,样本被分类为正例,否则分类为负例。
对于每个阈值,计算相应的精确率、召回率和F1分数。
将每个阈值下的精确率、召回率和F1分数绘制在同一个图表上,形成F1值曲线。
根据F1值曲线的形状和变化趋势,可以选择适当的阈值以达到所需的性能要求。
F1值曲线通常与接收者操作特征曲线(ROC曲线)一起使用,以帮助评估和比较不同模型的性能。它们提供了更全面的分类器性能分析,可以根据具体应用场景来选择合适的模型和阈值设置

综合对比来看:五个不同参数量级的模型在20个epoch之前有明显的差距,在40个epoch之后精度性能上就十分接近了没有肉眼可见的差异了达到了近乎相近的水平,综合考虑模型参数量,这里选择s系列的模型作为线上推理模型。

接下来我们详细看下s系列模型的结果:

【PR曲线】

【Batch实例】

【训练可视化】

感兴趣的话也都可以试试看!

如果自己不具备开发训练的资源条件或者是没有时间自己去训练的话这里我提供出来对应的训练结果可供自行按需索取。

单个模型的训练结果默认YOLOv8s

全系列五个模型的训练结果总集

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1392879.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

5-微信小程序语法参考

1. 数据绑定 官网传送门 WXML 中的动态数据均来自对应 Page 的 data。 数据绑定使用 Mustache 语法&#xff08;双大括号&#xff09;将变量包起来 ts Page({data: {info: hello wechart!,msgList: [{ msg: hello }, { msg: wechart }]}, })WXML <view class"vie…

分类问题:人工神经网络(ANN)+BP算法(误差后向传播)+考试例题讲解

学习链接:分类问题:人工神经网络(ANN)+BP算法(误差后向传播)+考试例题讲解 资料链接:链接:https://pan.baidu.com/s/1ijvMQmwtRgLO4KDSsNODMw 提取码:vyok 神经网络的应用非常的广,它核心思想非常简单,就是人是如何认知感知并且处理这个世界中的现实问题的。…

【React】Redux的使用详解

文章目录 Redux的三大原则Redux官方图react-redux使用 1、创建store管理全局状态​ 2、在项目index.js根节点引用 3、 在需要使用redux的页面或者组件中&#xff0c;通过connect高阶组件映射到该组件的props中 redux中异步操作如何使用redux-thunkcombineReducers函数 Re…

[C#]winform部署官方yolov8-rtdetr目标检测的onnx模型

【官方框架地址】 https://github.com/ultralytics/ultralytics 【算法介绍】 RTDETR&#xff0c;全称“Real-Time Detection with Transformer for Object Tracking and Detection”&#xff0c;是一种基于Transformer结构的实时目标检测和跟踪算法。它在目标检测和跟踪领域…

保证Kafka消息有序性

一、Kafka特性 写入同一个partion分区中的数据是一定有顺序的kafka中一个消费者消费一个partion的数据&#xff0c;消费者取出数据时&#xff0c;也是有顺序的 二、保证消息Kafka消息有序性 在生产者端&#xff0c;应保证消息被写入同一分区。可以在构造消息时指定消息的key…

Kafka-消费者-KafkaConsumer分析

与KafkaProducer不同的是&#xff0c;KafkaConsumer不是一个线程安全的类。 为了便于分析&#xff0c;我们认为下面介绍的所有操作都是在同一线程中完成的&#xff0c;所以不需要考虑锁的问题。 这种设计将实现多线程处理消息的逻辑转移到了调用KafkaConsumer的代码中&#x…

葡萄酒术语“干”是什么意思呢?

一个初学品酒的人常常会感到力不从心&#xff0c;有如此多的术语&#xff0c;如甜、干、单宁、酒体等等&#xff0c;很容易让人迷失。嗯&#xff0c;就像情人眼里出西施一样&#xff0c;“好酒”因人而异。虽然品尝各种不同的葡萄酒是了解你喜欢什么的最好方法&#xff0c;但我…

springboot开启HTTPS

目录 一、前言 HTTP和HTTPS的含义以及区别 二、域名映射 三、添加SSL证书 四、Http转Https 五、内网穿透 一、前言 我们平常写完一个接口&#xff0c;其访问一般都是使用http协议 我们最终想要的结果是使用安全的HTTPS来访问 在我们开始实现之前&#xff0c;我们要先搞明…

前端——框架——Vue

提示&#xff1a; 本文只是从宏观角度简要地梳理一遍vue3&#xff0c;不至于说学得乱七八糟、一头雾水、不知南北&#xff0c;如果要上手写代码、撸细节&#xff0c;可以根据文中的关键词去查找资料 简问简答&#xff1a; vue.js是指vue3还是vue2&#xff1f; Vue.js通常指的是…

软件测试|sqlalchemy relationship

简介 SQLAlchemy是一个流行的Python ORM&#xff08;对象关系映射&#xff09;库&#xff0c;它允许我们以面向对象的方式管理数据库。在SQLAlchemy中&#xff0c;relationship是一个重要的功能&#xff0c;用于建立表之间的关系。在本文中&#xff0c;我们将详细探讨relation…

阿里云国外云服务器地域、收费标准及活动报价2024新版

阿里云国外服务器优惠活动「全球云服务器精选特惠」&#xff0c;国外服务器租用价格24元一个月起&#xff0c;免备案适合搭建网站&#xff0c;部署独立站等业务场景&#xff0c;阿里云服务器网aliyunfuwuqi.com分享阿里云国外服务器优惠活动&#xff1a; 全球云服务器精选特惠…

【前后端的那些事】评论功能实现

文章目录 聊天模块1. 数据库表2. 后端初始化2.1 controller2.2 service2.3 dao2.4 mapper 3. 前端初始化3.1 路由创建3.2 目录创建3.3 tailwindCSS安装 4. tailwindUI5. 前端代码编写 前言&#xff1a;最近写项目&#xff0c;发现了一些很有意思的功能&#xff0c;想写文章&…

Power Designer 连接 PostgreSQL 逆向工程生成pd表结构操作步骤以及过程中出现的问题解决

一、使用PowerDesigner16.5 链接pg数据库 1.1、启动PD.选择Create Model…。 1.2、选择Model types / Physical Data Model Physical Diagram&#xff1a;选择pgsql直接【ok】 1.3、选择connect 在工具栏选择Database-Connect… 快捷键&#xff1a;ctrlshiftN.如下图&#xff…

第八站:C++面向对象(继承和派生)

继承和派生 派生:由父类派生出子类 继承:子类继承父类(继承不会继承析构函数和构造函数:父类的所有成员函数&#xff0c;以及数据成员&#xff0c;都会被子类继承&#xff01;) "子类派生出的类"会指向"父类被继承的类",父类就是基类 实例1: 先创建一个父…

Flask框架小程序后端分离开发学习笔记《2》构建基础的HTTP服务器

Flask框架小程序后端分离开发学习笔记《2》构建基础的HTTP服务器 Flask是使用python的后端&#xff0c;由于小程序需要后端开发&#xff0c;遂学习一下后端开发。本节提供一个构建简单的本地服务器的代码&#xff0c;仔细看注释&#xff0c;学习每一步的流程&#xff0c;理解服…

react-app框架——使用monaco editor实现online编辑html代码编辑器

文章目录 ⭐前言&#x1f496;react系列文章 ⭐配置monaco-editor&#x1f496;引入react-monaco-editor&#x1f496;引入react-app-rewired&#x1f496;通过config-overrides.js添加monaco插件配置 ⭐编辑代码的react页面配置&#x1f496;扩展 可自定义配置语言 ⭐效果⭐总…

使用 mybatis-plus 的mybaits的一对多时, total和record的不匹配问题

应该是框架的问题&#xff0c;去官方仓库提了个issues&#xff0c;等回复 https://github.com/baomidou/mybatis-plus/issues/5923 背景 发现 record是两条&#xff0c;但是total显示3 使用resultMap一对多时&#xff0c;三条数据会变成两条&#xff0c;但是total确是3条 下…

新能源汽车智慧充电桩方案:基于视频监控的可视化智能监管平台

一、方案概述 TSINGSEE青犀&触角云新能源汽车智慧充电桩方案围绕互联网、物联网、车联网、人工智能、视频技术、大数据、4G/5G等技术&#xff0c;结合云计算、移动支付等&#xff0c;实现充电停车一体化、充电桩与站点管理等功能&#xff0c;达到充电设备与站点的有效监控…

[足式机器人]Part2 Dr. CAN学习笔记-Ch04 Advanced控制理论

本文仅供学习使用 本文参考&#xff1a; B站&#xff1a;DR_CAN Dr. CAN学习笔记 - Ch04 Advanced控制理论 1. 绪论2. 状态空间表达State-Space Representation3. Phase Portrait相图&#xff0c;相轨迹3 1. 1-D3 2. 2-D3 3. General Form3 4. Summary3.5. 爱情中的数学-Phase …

Luckysheet类似excel的在线表格(vue)

参考文档&#xff1a;快速上手 | Luckysheet文档 一、引入 在vue项目的public文件夹下的index.html的<head>标签里面引入 <link relstylesheet hrefhttps://cdn.jsdelivr.net/npm/luckysheetlatest/dist/plugins/css/pluginsCss.css /><link relstylesheet hre…