【操作系统】在阅读论文:OrcFS: Orchestrated file system for flash storage时需要补充的基础知

news2024/11/19 18:42:01

在阅读论文:OrcFS: Orchestrated file system for flash storage是需要补充的基础知识
这篇论文是为了解决软件层次之间的信息冗余问题

To minimize the disk traffic, the file system buffers the updates and then flushes them to the disk as a single unit, a segment (e.g.,2Mbyte), either when the buffer is full or when fsync() is called.

在这里插入图片描述The metadata area consists of the file system super block (FS-SB), checkpoint, segment information table (SIT), and node address table (NAT). The SIT manages the block
bitmap of each segment in the data area. The NAT manages the block address corresponding to
each node ID.

在这里插入图片描述

fsync

一、缓冲#
传统的UNIX实现的内核中都设置有缓冲区或者页面高速缓存,大多数磁盘IO都是通过缓冲写的。

当你想将数据write进文件时,内核通常会将该数据复制到其中一个缓冲区中,如果该缓冲没被写满的话,内核就不会把它放入到输出队列中。

当这个缓冲区被写满或者内核想重用这个缓冲区时,才会将其排到输出队列中。等它到达等待队列首部时才会进行实际的IO操作。
在这里插入图片描述
这里的输出方式就是大家耳熟能详的: 延迟写

这个缓冲区就是大家耳熟能详的:OS Cache

二、延迟写的优缺点#
很明显、延迟写降低了磁盘读写的次数,但同时也降低了文件的更新速度。

这样当OS Crash时由于这种延迟写的机制可能会造成文件更新内容的丢失。而为了保证磁盘上的实际文件和缓冲区中的内容保持一致,UNIX系统提供了三个系统调用:sync、fsync、fdatasyn

三、sync、fsync、fdatasync

#include<unistd.h>
int fsync(int filedes);
int fdatasync(int filedes);
int sync();

sync系统调用:将所有修改过的缓冲区排入写队列,然后就返回了,它并不等实际的写磁盘的操作结束。所以它的返回并不能保证数据的安全性。通常会有一个update系统守护进程每隔30s调用一次sync。

fsync系统调用:需要你在入参的位置上传递给他一个fd,然后系统调用就会对这个fd指向的文件起作用。fsync会确保一直到写磁盘操作结束才会返回。所以fsync适合数据库这种程序。

fdatasync系统调用:和fsync类似但是它只会影响文件的一部分,因为除了文件中的数据之外,fsync还会同步文件的属性。

缓存的意义:

系统调用是一件成本很高的事情,如果没有缓冲区,写一个数据就要传输一下,时间成本很高。缓冲区可以根据一定的策略进行数据的一次性传输,所以意义就是可以节省调用者的时间。

OrcFS的架构

在这里插入图片描述

基础知识补充

1.磁盘

磁盘是计算机上唯一一个机械设备,磁盘和我们现在电脑上的固态硬盘(SSD)不一样,固态硬盘是电子的,比起磁盘要快的多,但是价格比磁盘贵。磁盘现在只有一些公司存储大量数据的时候会用,因为成本低。

机械磁盘中主要的部件有:马达、磁盘、磁头等,磁盘有一摞,数据就记录在磁盘上面,一个磁盘有两面,就会有两个磁头,一个磁头负责一面的数据读写。磁头负责读写磁盘上的数据,马达负责转动磁盘。磁头和磁盘是不接触的,但是距离非常近,如果磁头接触了磁盘,就有可能把磁盘上的数据抹掉,造成数据丢失。所以磁盘是不能碰撞的,一旦磕碰就有可能会发生数据丢失,这也是被淘汰的原因

计算机是只能识别0和1的,那么在磁盘上怎么区分0和1呢?不同的设备区分0和1的方法不同,在磁盘上就是以南极北极区分0和1,磁盘的盘片上有无数的基本单元,每一个基本单元就是一个磁铁,磁铁就有南极和北极。所以写入数据的过程就是把N编程S,删除数据的本质就是S编程N。所以磁头读取数据就是读取南北极,写入数据就是更改南北极。

在这里插入图片描述

2.具体存储:

数据在盘面上存储的,而盘面是一个同心圆,那么根据什么规则来找到数据所在的区域呢?

把盘面分为多个扇面,每个扇面都有磁道划分扇区,数据就是存储在无数个扇区里面,每个扇区大小不同,但是存储的bit位是相同的,都是512字节,那么怎么找到对应的扇区呢? 一个磁盘有多个盘面,一个盘面对应一个磁头,所以可以给磁头定一个编号,根据磁头能找到盘面,而盘面相对位置都是一样的,所以就会有一个柱面,这个柱面就是磁道,然后根据扇面的编号就可以确定一个扇区。磁头(head)、柱面(cylinder)、扇区(sector)这种就是一种CHS定位法。根据这种方法可以定位任意一个扇区,把文件写入磁盘的本质就是给一个或者多个扇区写入二进制,或者读取多个扇区的二进制。
在这里插入图片描述

对磁盘物理结构的逻辑抽象

​ 一个磁盘通过CHS地址能够访问到任何一个扇区,那么OS内不能是不是通过CHS地址访问磁盘中的数据呢?并不是。一旦磁盘物理结构发生改变,OS就不能访问数据了,这样是为了OS和磁盘之间解耦。

一个扇区也就是512字节,但是OS读取数据的时候基本单位是4kb,哪怕OS只修改一个bit位OS也会把这一个bit位所在4kb全部读取,然后修改完成后再把4kb整体放回到原来的地方。所以操作系统需要有一套新的地址进行IO操作。
那么操作系统想要一次读取4kb(也就是8个扇区),怎么读取的呢?
把一个盘面抽象成一个数组。LBA方式读取数据

​ 磁盘的数据存储再盘面上,而盘面是一个同心圆,从最外圈到最内圈有无数个磁道,一圈磁道有许多扇区,如果把磁道拉伸成一个线性的,就像磁带一样,最开始读取数据是在最外圈,最后读取的数据是在最内圈。一个磁道拉伸出来就像一个长条,然后这个长条内有无数个扇区就像数组的空间,这样一圈磁道就被拉伸成了一个数组,内侧磁道拉伸成数组头部跟在外侧磁道尾部的后面,这样就可以把一个同心圆抽象成一个数组。
​ 计算机要读取一个内置类型或者自定义类型时,通常是起始地址+偏移量(数据类型)。OS读取4kb也就是8个扇区就是读取8个扇区空间的首地址。这4kb大小的类型,被称为块。把这个数据块看做一种数据类型。块的地址就是一个下标。这种读取数据的方式被称为LBA。

LBA转换成CHS方法,简单的转换,实际的转换方法一定要复杂得多。

//假设一个盘面有10圈磁道,一圈有500个扇区,一个盘面有5000个扇区。读取6500号数组下标
C:1500/500 = 3
H:6500/5000 = 1
S: 1500%500 = 0
到现在操作系统对磁盘的管理就变成了对数组的管理。

文件系统

​ OS对磁盘抽象为数组管理,每个数组空间为4kb,但是磁盘有着很大的空间,是以GB甚至是TB为单位的。用一个简单数组直接管理难度太大。所以会对磁盘进行分区,类似分C盘D盘,而每个区还是很大,所以每个区会分组(group)管理。
在这里插入图片描述
每个组内又分了各种区域存储不同的信息,把一个组管理模式可以复刻到每一个分组,这样就能管理好整个分区。

super block

这个分区内存放的是:
1.文件系统的类型
2.整个分组的情况
super block在每个分组里都存在,而且都存了文件系统的类型,是同时更新的同样的数据。主要是为了做多个备份,如果super block这个区域的数据没有备份而且损坏,直接导致整个分区的数据不能被使用。

Group Descriptor Table

简称GDT:组描述符,主要是记录组内详细统计等信息。例如每个区域的大小等等

inode table

linux系统中,内容和属性是分开存储的,一个文件的所有属性集合就是一个inode(128kb)节点,一个分组内也有大量的文件也就有大量的inode节点,这些inode节点都存储在inode
table表中,每一个inode节点都有自己的indoe编号,也属于对应文件的属性id。

Linux中查看inode编号ls -il

Date block

主要存储文件的内容数据,所有的文件的内容都被存储在Date block这个区域内。Linux查找一个文件必须先找到这个文件对应的inode节点的编号,通过indoe节点映射关系找到文件的内容。

inode bitmap

这个区域内的一个bit位表示一个inode的使用情况,0表示空可以使用,1表示被占用。

Linux系统只认识inode编号,并不存在文件名,文件名是给用户看的。

ref: https://blog.csdn.net/weixin_48344647/article/details/129925872

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1389649.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

datawhale 大模型理论基础 引言

学习地址&#xff1a;大模型理论基础 一、什么是语言模型&#xff08;Language Model) 语言模型其实是一个概率模型&#xff0c;给每一个句子列表计算一个概率值&#xff1a; p(x1​,…,xL​) 例如&#xff1a; p(the, mouse, ate, the, cheese)0.02…

解决若依Vue3前后端分离---路由切换时显示白屏

解决若依Vue3前后端分离---路由切换时显示白屏 1.问题重述 解决基于Vue3若依前后端分离项目中出现的路由正常切换但是就是不显示数据的问题&#xff0c;也就是不发起网络请求的问题。 找到如下位置中AppMain.vue文件 将除了css中的代码进行替换成如下的代码。 <template&g…

Python数据分析案例34——IMDB电影评论情感分析(Transformer)

电影评论的情感分析 案例背景 很多同学对电影系列的数据都比较喜欢&#xff0c;那我就补充一下这个最经典的文本分类数据集&#xff0c;电影情感评论分析。用神经网络做。对国外的英文评论文本进行分类&#xff0c;看是正面还是负面情感。 数据集介绍 数据集&#xff1a;IMDb…

C# wpf 获取控件的刷新时机

文章目录 前言一、为何需要刷新时机&#xff1f;例子一、隐藏控件后截屏例子二、修改控件大小后做计算 二、如何实现&#xff1f;1.使用动画2.使用TaskCompletionSource 三、完整代码四、使用示例1、隐藏工具条截屏2、修改宽高后获取ActualWidth、ActualHeight 总结 前言 做wp…

Codeforces Round 920 (Div. 3) F题 根号分治,后缀和,后缀和的后缀和

Problem - F - Codeforces 我看的这位UP的视频讲解 &#xff1a; Codeforces Round 920 (Div. 3) F题 根号分治 详解_哔哩哔哩_bilibili 目录 题意&#xff1a; 思路&#xff1a; 后缀和的后缀和: 后缀和的后缀和的中间段如何求&#xff1a; ———— 根号分治: 核心…

2024极新生态营再出发,携手华为云点燃AI技术与商业创新的火花

“ 成功的风口是时间加产品竞争力 ” 文&#xff5c;欣桐&凯丰 编辑 | 云舒 出品&#xff5c;极新 2023年大模型获得突破性进展&#xff0c;正在带来新一轮科技革命和产业变革&#xff0c;众多头部企业在一年内完成了产品迭代、拿到多轮融资&#xff0c;初创企业更是如…

Java-网络爬虫(三)

文章目录 前言一、爬虫的分类二、跳转页面的爬取三、网页去重四、综合案例1. 案例三 上篇&#xff1a;Java-网络爬虫(二) 前言 上篇文章介绍了 webMagic&#xff0c;通过一个简单的入门案例&#xff0c;对 webMagic 的核心对象和四大组件都做了简要的说明&#xff0c;以下内容…

不是人才用不起,而是AI巡检更有性价比!

在许多行业中&#xff0c;如煤炭、电力、化工等&#xff0c;安全生产是至关重要的。这就需要通过巡检&#xff0c;对设备运行状态进行实时监测&#xff0c;及时发现并处理潜在的安全隐患&#xff0c;从而降低事故发生的概率。但是传统的巡检方式通常依赖于人工进行&#xff0c;…

odoo17 | Qweb模板简介

前言 到目前为止&#xff0c;我们的房地产模块的界面设计还相当有限。构建列表视图很简单&#xff0c;因为只需要字段列表。表单视图也是如此&#xff1a;尽管使用了几个标签&#xff0c;如 <group>标签或 <page>标签 &#xff0c;但在设计方面几乎没什么可做的。…

【Java数据结构】04-图(Prim,Kruskal,Dijkstra,topo)

5 图 推荐辅助理解 【视频讲解】bilibili Dijkstra Prim 【手动可视化】Algorithm Visualizer &#xff08;https://algorithm-visualizer.org/&#xff09; 【手动可视化】Data Structure Visualizations (https://www.cs.usfca.edu/~galles/visualization/Algorithms.ht…

Python 捕获异常(Try Except Exception)

目录 前言 常见的十类异常类型&#xff1a; try...except...else语句 格式 示例1 示例2 捕获所有异常&#xff08;常用&#xff09; 格式 示例 try...except...finally语句 格式 示例 前言 异常捕获就是针对某一部分可能出错的代码&#xff0c;在运行期间一旦出现…

免费开源OCR 软件Umi-OCR

Umi-OCR 是一款免费、开源、可批量的离线 OCR 软件&#xff0c;基于 PaddleOCR&#xff0c;适用于 Windows10/11 平台 免费&#xff1a;本项目所有代码开源&#xff0c;完全免费。方便&#xff1a;解压即用&#xff0c;离线运行&#xff0c;无需网络。高效&#xff1a;自带高效…

Dhcp中继ensp

拓扑图 <Huawei>system-view [Huawei]sysname SW1 [SW1]vlan batch 10 20 [SW1]int e0/0/1 #配置access接口 [SW1-Ethernet0/0/1]port link-type access [SW1-Ethernet0/0/1]port default vlan 10 [SW1-Etherne…

基于4G数采终端的供热管网在线监测方案

我国大部地区全面进入到冬季&#xff0c;北方各地已开启冬季供暖&#xff0c;以保障居民生活所需。由于城市化的发展&#xff0c;城市内各供热区域愈发分散、供热管道漫长、供热环境复杂&#xff0c;对于供热管网及换热站点的监测和维护提出了诸多挑战。 方案介绍 针对提高供热…

0、C++预备知识

文章目录 C与C语言为什么要学习CC为什么难学c值得学习的新特征C参考书籍开发工具 可移植性和标准程序创建的技巧编译和链接 C与C语言 C是一种计算机高级程序设计语言&#xff0c;C既可以进行C语言的过程化程序设计&#xff0c;又可以进行以抽象数据类型为特点的基于对象的程序…

强化学习11——DQN算法

DQN算法的全称为&#xff0c;Deep Q-Network&#xff0c;即在Q-learning算法的基础上引用深度神经网络来近似动作函数 Q ( s , a ) Q(s,a) Q(s,a) 。对于传统的Q-learning&#xff0c;当状态或动作数量特别大的时候&#xff0c;如处理一张图片&#xff0c;假设为 210 160 3 …

Android性能优化 | DEX 布局优化和启动配置文件

Android性能优化 | DEX 布局优化和启动配置文件 引言 使用DEX布局优化和启动配置文件是优化Android应用性能的有效途径。DEX布局优化可以通过优化应用程序中的DEX文件布局&#xff0c;从而加快Android应用的启动速度和执行速度。启动配置文件则提供了一种灵活的方式来控制应用…

SDRAM小项目——命令解析模块

简单介绍&#xff1a; 在FPGA中实现命令解析模块&#xff0c;命令解析模块的用来把pc端传入FPGA中的数据分解为所需要的数据和触发命令&#xff0c;虽然代码不多&#xff0c;但是却十分重要。 SDRAM的整体结构如下&#xff0c;可以看出&#xff0c;命令解析模块cmd_decode负责…

知存科技助力AI应用落地:WTMDK2101-ZT1评估板实地评测与性能揭秘

文章目录 一、前言二、深入了解存算一体技术2.1 什么是存算一体2.2 存算一体技术发展历程2.3 基于不同存储介质的存内计算芯片性能比较 三、国产存算一体&#xff0c;重大进展3.1 知存科技&#xff1a;我国存算一体领域的研发领导者 四、知存科技新型 WTM2101 SOC 评估板使用评…