yolov8n 瑞芯微RKNN和地平线Horizon芯片仿真测试部署,部署工程难度小、模型推理速度快

news2024/11/18 21:37:46

  特别说明:参考官方开源的yolov8代码、瑞芯微官方文档、地平线的官方文档,如有侵权告知删,谢谢。

  模型和完整仿真测试代码,放在github上参考链接 模型和代码。

  因为之前写了几篇yolov8模型部署的博文,存在两个问题:部署难度大、模型推理速度慢。该篇解决了这两个问题,且是全网部署难度最小、模型运行速度最快的部署方式。相对之前写的一篇【yolov8 瑞芯微RKNN和地平线Horizon芯片仿真测试部署】将DFL写在后处理中模型加速了,针对后处理进行优化后时耗略微增加。

1 模型和训练

  训练代码参考官方开源的yolov8训练代码。

2 导出 yolov8 onnx

   导出onnx增加以下几行代码:
在这里插入图片描述

        # 导出 onnx 增加
        y = []
        for i in range(self.nl):
            t1 = self.cv2[i](x[i])
            t2 = self.cv3[i](x[i])
            y.append(t1)
            y.append(t2)
        return y

  增加保存onnx模型代码
在这里插入图片描述

        print("===========  onnx =========== ")
        import torch
        dummy_input = torch.randn(1, 3, 640, 640)
        input_names = ["data"]
        output_names = ["reg1", "cls1", "reg2", "cls2", "reg3", "cls3"]
        torch.onnx.export(self.model, dummy_input, "./weights/yolov8_relu_80class_ZQ1.onnx", verbose=False, input_names=input_names, output_names=output_names, opset_version=11)
        print("======================== convert onnx Finished! .... ")

  修改完以上两个地方,运行推理脚本(运行会报错,但不影响onnx文件的生成)。

from ultralytics import YOLO
# 推理
model = YOLO('./weights/yolov8n_relu_ZQ_80class.pt')
results = model(task='detect', mode='predict', source='./images/test.jpg', line_width=3, show=True, save=True, device='cpu')

3 yolov8 onnx 测试效果

  onnx模型和测试完整代码,放在github上代码。
在这里插入图片描述

4 tensorRT 优化前后时耗

  上一篇【yolov8 瑞芯微RKNN和地平线Horizon芯片仿真测试部署】tensorRT部署推理10000次的平均时耗(显卡 Tesla V100、cuda_11.0)
在这里插入图片描述
本篇tensorRT部署推理10000次的平均时耗(显卡 Tesla V100、cuda_11.0)
在这里插入图片描述

5 rknn 板端C++部署

  C++完整部署代码和模型示例参考

  把板端C++代码的模型和时耗也给贴出来供大家参考,使用芯片rk3588。相对之前在rk3588上推理40ms,降到了17ms,后处理稍微有增加。

  上一篇【yolov8 瑞芯微RKNN和地平线Horizon芯片仿真测试部署】部署到rknn3588上的C++时耗
在这里插入图片描述
  本篇部署方法时耗
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1375874.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

【AI】AI和医疗大数据(3/3)

目录 六、AI和医疗大数据的结合案例——基于卷积神经网络CT图像检测 ——步骤: ——技术: ——案例: ——典型应用步骤详解: 第一步:数据预处理 第二步:训练集构建 第三步:预测 第四&a…

Serverless无服务

软件工程的本质复杂度和次要复杂度 本质:如何从抽象的问题,发展出具体的概念上的解决方案(业务问题) 次要:指实现它的过程(技术手段) 过去解决了的次要复杂度(提升研发效率&#…

代币中的decimal精度代表了什么

精度的意义在于允许发送小数的代币。举例,一个CAT代币合约的精度为6。那么 你拥有1个CAT就意味着合约中的balance 1 * 10^6 , 转账 0.1CAT出去的话,就需要输入 0.1*10^6 10^5。 也就时在涉及代币时,查询到的余额、转账的代币数量 都和 代币…

用通俗易懂的方式讲解大模型分布式训练并行技术:MOE并行

前面的文章中讲述了数据并行、流水线并行、张量并行、序列并行、自动并行等多种并行技术。但现在的模型越来越大,训练样本越来越多,每个样本都需要经过模型的全部计算,这就导致了训练成本的平方级增长。 而当我们希望在牺牲极少的计算效率的…

使用numpy处理图片——90度旋转

在《使用numpy处理图片——镜像翻转和旋转》一文中,我们介绍了如何将图片旋转的方法。本文将使用更简单的方法旋转图片90度。 左旋转90度 import numpy as np import PIL.Image as Imagedata np.array(Image.open(the_starry_night.jpg))# left 90 rot90LeftWith…

电子学会C/C++编程等级考试2020年12月(二级)真题解析

C/C++编程(1~8级)全部真题・点这里 第1题:数组指定部分逆序重放 将一个数组中的前k项按逆序重新存放。例如,将数组8,6,5,4,1前3项逆序重放得到5,6,8,4,1。 时间限制:1000 内存限制:65536 输入 输入为两行: 第一行两个整数,以空格分隔,分别为数组元素的个数n(1 < n…

鸿蒙HarmonyOS兼容JS的类Web开发-开发指导

鸿蒙HarmonyOS兼容JS的类Web开发-开发指导 文章目录 鸿蒙HarmonyOS兼容JS的类Web开发-开发指导常用组件开发指导list开发指导创建list组件添加滚动条添加侧边索引栏实现列表折叠和展开场景示例 dialog开发指导创建dialog组件设置弹窗响应场景示例 form开发指导创建form组件实现…

一个完整的流程表单流转

1.写在前面 一个完整的流程表单审批&#xff08;起表单-->各环节审批-->回退-->重新审批-->完成&#xff09;&#xff0c;前端由Vue2jsElement UI升级为Vue3tsElement Plus&#xff0c;后端流程框架使用Flowable&#xff0c;项目参考了ruoyi-vue-pro(https://gite…

使用python读取yaml文件数据

使用python读取yaml文件&#xff1a; yaml文件数据&#xff1a;data.yaml login_data:url: http://www.baidu.comcase1:user1: password1: 12345errorText: 请输入用户名case2:user2: adminpassword2: errorText: 请输入密码case3:user3: adminpassword3: 123456errorText: 登…

视频监控设备通过onvif协议接入到视频监控平台

目 录 一、什么是onvif规范 1、onvif的定义 2、onvif的优势 二、AS-V1000监控平台对onvif的支持程度 二、通过onvif接入视频监控设备 1、onvif维护主页面 2、设备发现 3、设备验证 4、设备录入系统 5、通道配置 6、权限分配 三、对onvif设备进行…

【设计模式-6】建造者模式的实现与框架中的应用

建造者模式又被成为生成器模式&#xff0c;是一种使用频率比较低&#xff0c;相对复杂的创建型模式&#xff0c;在很多源码框架中可以看到建造者的使用场景&#xff0c;稍后我们会在本文末尾展示几个框架的使用案例。  建造者模式所构造的对象通常是比较复杂而且庞大的&#x…

C++ n皇后问题 || 深度优先搜索模版题

n− 皇后问题是指将 n 个皇后放在 nn 的国际象棋棋盘上&#xff0c;使得皇后不能相互攻击到&#xff0c;即任意两个皇后都不能处于同一行、同一列或同一斜线上。 现在给定整数 n &#xff0c;请你输出所有的满足条件的棋子摆法。 输入格式 共一行&#xff0c;包含整数 n 。 …

SpringCloud 之HttpClient、HttpURLConnection、OkHttpClient切换源码

SpringCloud 之HttpClient、HttpURLConnection、OkHttpClient切换源码 HttpClient、HttpURLConnection、OkHttpClient区别切换HttpClient 源码分析总结切换HttpClient源码验证切换是否成功okHttpClient 切换源码分析总结 okHttpClient 切换源码同时开启 okHttp 与httpClient 会…

【数字人】8、EAT | 为数字人引入情感表情(ICCV2023)

论文&#xff1a;Efficient Emotional Adaptation for Audio-Driven Talking-Head Generation 代码&#xff1a;https://yuangan.github.io/eat/ 出处&#xff1a;ICCV2023 特点&#xff1a;能引入表情&#xff0c;但无法眨眼&#xff0c;需要 音频 pose 图片 同时作为输入…

Java文件自动生成文档

说明 此文章根据Gemini Pro 生成资料整理。 生成文档 javadoc -d mydoc -author -version HelloWorld.java javadoc -d mydoc -author -version HelloWorld.java 命令用于生成 Java 源文件的javadoc文档&#xff0c;并将javadoc文档输出到 mydoc 目录中。 javadoc&#xf…

Linux学习之网络编程2(socket,简单C/S模型)

写在前面 Linux网络编程我是看视频学的&#xff0c;Linux网络编程&#xff0c;看完这个视频大概网络编程的基础差不多就掌握了。这个系列是我看这个Linux网络编程视频写的笔记总结。 网络字节序 小端法&#xff1a;pc本地存储&#xff0c;高位存高地址&#xff0c;低位存低地…

AI技术已经发现了一种新材料,可以在电池制造中减少对锂的需求

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

Docker 安装:在linux系统CentOS7 版本 安装Docker

目录 一&#xff0c;Docker介绍&#xff1a; 1.1Docker是什么&#xff1f; 1.2Docker组成 二&#xff0c;Docker安装&#xff1a; 三&#xff0c;Docker基本使用 3.1服务 3.2镜像 3.3容器 &#x1f389;&#x1f389;欢迎来到我的CSDN主页&#xff01;&#x1f389;&am…

UniApp调试支付宝沙箱(安卓)

先看下这里完整的交互的图&#xff1a;小程序文档 - 支付宝文档中心 一、打包 不管怎样&#xff0c;先打个包先。可以直接使用云端证书、云端打包&#xff0c;只需要指定包名即可。 二、在支付宝开放平台创建应用 这个参考官方的过程就可以了&#xff0c;只要有刚才打的包&…

【REST2SQL】08 日志重构增加输出到文件log.txt

【REST2SQL】01RDB关系型数据库REST初设计 【REST2SQL】02 GO连接Oracle数据库 【REST2SQL】03 GO读取JSON文件 【REST2SQL】04 REST2SQL第一版Oracle版实现 【REST2SQL】05 GO 操作 达梦 数据库 【REST2SQL】06 GO 跨包接口重构代码 【REST2SQL】07 GO 操作 Mysql 数据库 原来…