C++中的返回值优化(RVO)

news2024/10/5 12:47:03

一、命名返回值优化(NRVO)

是Visual C++2005及之后版本支持的优化。

具体来说,就是一个函数的返回值如果是一个对象。那么,正常的返回语句的执行过程是,把这个对象从当前函数的局部作用域,或者叫当前函数的栈空间,拷贝到返回区,使得调用者可以访问。然后程序从当前函数中返回到上一层,即该函数的调用语句处,通过访问返回区的对象,来执行调用语句所在的一整个语句。

当这个函数中所有的返回语句全部是这一个对象的话,那么,命名返回值优化的作用就是,在这个对象建立的时候,直接在返回区建立。这样就使得函数返回时不需要调用拷贝构造函数了,减少了一个对象的创建与销毁过程。

代码如下:

#include <iostream>
using namespace std;
 
class A
{
public:
    A()
    {
        member = 1;
        cout << "default constructor" << endl;
    }
    A(const A &right)
    {
        member = right.member;
        cout << "copy constructor" << endl;
    }
    ~A()
    {
        cout << "destructor" << endl;
    }
    A& operator = (const A &right)
    {
        cout << "assigning operator" << endl;
        return *this;
    }
    int member;
};
 
A MyMethod(int n)
{
   A retVal;
   retVal.member = n;
   return retVal;
}
 
 
int main()
{
    A valA;
    valA = MyMethod(10);
    return 0;
}

在VS2010的命令行下,进行未优化的编译: cl /Od example.cpp(cl编译的优化选项附文末)。执行example.exe,得到输出结果如下图

再次编译,进行优化后的编译: cl /O2 example.cpp ,执行example.exe,得到输出结果如下图

注:NRVO在多层嵌套函数下依然有效。

实验代码:

#include <iostream>
using namespace std;
 
class A
{
public:
    A()
    {
        member = 1;
        cout << "default constructor" << endl;
    }
    A(const A &right)
    {
        member = right.member;
        cout << "copy constructor" << endl;
    }
    ~A()
    {
        cout << "destructor" << endl;
    }
    A& operator = (const A &right)
    {
        cout << "assigning operator" << endl;
        return *this;
    }
    int member;
};
 
A f()
{
	A tmp;
	return tmp;
}
A MyMethod(int n)
{
	A tmp = f();
	return tmp;
}
 
 
int main()
{
    A valA;
    valA = MyMethod(10);
    return 0;
}

cl /Od结果:

cl /O2结果:

 二、未命名返回值优化

还有一种未命名的返回值优化,是这样做的,在返回语句中直接创建一个临时对象并返回。

实际上,这并不太能算是一种优化,因为在/Od的cl编译下也会进行优化。所以,这里相当于一个高效的编程技巧。

如下代码:

#include <iostream>
using namespace std;
 
class MyClass
{
public:
    MyClass()
    {
        cout << "default constructor at " << this << endl;
    }
    MyClass(int a, int b)
    {
        cout << "normal constructor at " << this << endl;
    }
    MyClass(const MyClass &right)
    {
        cout << "copy constructor at " << this << endl;
    }
    ~MyClass()
    {
        cout << "destructor at " << this << endl;
    }
};
 
MyClass MyMethod1(int a, int b)
{
    MyClass tmp1(a, b);
    MyClass tmp2(b, a);
    if(a > b)
    {
        return tmp1;
    }
    else
    {
        return tmp2;
    }
}
MyClass MyMethod2(int a, int b)
{
    if(a > b)
    {
        return MyClass(a, b);
    }
    else
    {
        return MyClass(b, a);
    }
}
 
int main()
{
    MyClass m;
    cout << "m at " << &m << endl;
    m = MyMethod1(1, 2);
    m = MyMethod2(1, 2);
    return 0;
}

在MyMethod1中,经历了创建tmp1与tmp2,并根据条件返回某个tmp的过程,不具备前文所述NRVO的条件(所有返回语句都要返回一个相同对象),那么会有两个tmp对象被创建,其中一个会被拷贝到返回区,再返回到函数调用语句。

但如果在返回语句中直接构造MyClass临时对象,如MyMethod2中所示,这样就可以直接将临时对象构造在返回区中,节省了两个对象的创建与销毁的过程。

用不带优化的/Od编译后,执行后结果如下:


注:未命名的返回值优化在多层函数嵌套下依然有效。

实验代码与NRVO如出一辙:

#include <iostream>
using namespace std;
 
class A
{
public:
    A()
    {
        cout << "default constructor" << endl;
    }
    A(const A &right)
    {
        cout << "copy constructor" << endl;
    }
    ~A()
    {
        cout << "destructor" << endl;
    }
    A& operator = (const A &right)
    {
        cout << "assigning operator" << endl;
        return *this;
    }
};
 
A f()
{
	return A();
}
A MyMethod(int n)
{
	return f();
}
 
 
int main()
{
    A valA;
    valA = MyMethod(10);
    return 0;
}

cl /Od结果如下:

三、 隐式构造函数优化

当用赋值语句对一个对象进行赋值时,最一般的情况是先执行赋值号右侧的表达式,再将表达式的结果(一般是编译时产生的临时变量)赋值给对象。

然而,当用赋值语句对一个对象进行初始化时,则该表达式的结果就是该对象。即,不需要产生临时变量,而是直接将表达式的结果建立在该对象的位置上。

不是很好表述,代码如下:

#include <iostream>
using namespace std;
 
class A
{
public:
	A()
	{
		cout << "default constructor" << endl;
	}
	A(const A &)
	{
		cout << "copy constructor" << endl;
	}
	~A()
	{
		cout << "destructor" << endl;
	}
	A& operator = (const A &)
	{
		cout << "operator =" << endl;
		return *this;
	}
};
 
A func()
{
	return A();
}
 
int main()
{
	A a = func();// A a(func())效果相同
	return 0;
}

运行结果如图所示:

func函数中,return右边的A()直接是在函数返回区建立的。而这个返回区,在主函数中,就变成了a。所以只需要一个构造函数。

个人的理解是这样的:在栈空间中,调用函数时,会在压入实参之前,留下一个函数返回值的类型的大小那么大的空间,作为函数的返回区。而新建立的变量a,其地址恰恰就在返回区的这个地方,这两者是完全重合的。所以,在函数返回后,无需将函数返回值作为拷贝构造函数的参数去初始化a,而是——什么都不用做。因为a所在的区域,就是函数的返回区域。

然而,当多重函数这样返回的时候,结果还是一样的。这里让我有点费解。代码如下:

#include <iostream>
using namespace std;
 
class A
{
public:
	A()
	{
		cout << "default constructor" << endl;
	}
	A(const A &)
	{
		cout << "copy constructor" << endl;
	}
	~A()
	{
		cout << "destructor" << endl;
	}
private:
	A& operator = (const A &)
	{
		cout << "operator =" << endl;
		return *this;
	}
};
 
A func1()
{
	return A();
}
 
A func()
{
	return func1();
}
 
int main()
{
	A a(func());
	return 0;
}

运行的结果和上面的是一样的,还是只执行了一次默认构造函数。
问题是,如果函数返回值的返回区确实是在实参之前,与调用者的下一个局部变量的地址是重合的话,那么,a和func()返回区的地址是重合的,可以理解。可func1()的返回区不应该是在func的栈空间中吗?怎么又会和main中的a重合呢?

现在只能理解这么多了。可能只有了解了C++的函数调用约定之后才能明白吧!

附:Visual Studio(2010)的cl优化选项:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1366914.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue+element弹窗内---下拉框定位问题解决(方法之一)

问题: 加了 :popper-append-to-body"false" 这个属性也不好用时 可以试试这个 解决: 第一步: 找到el-select标签添加(popper-class"popperClass")属性-----如下图 第二步:在css中添加如下代码即可 ::v-deep .popperClass{ top:auto !important; }

Java学习苦旅(二十二)——MapSet

本篇博客将详细讲解Map和Set。 文章目录 搜索概念模型 MapMap.Entry<K, V>Map的常用方法说明TreeMap和HashMap的区别 Set常用方法说明TreeSet和HashSet的区别 结尾 搜索 概念 Map和set是一种专门用来进行搜索的容器或者数据结构&#xff0c;其搜索的效率与其具体的实例…

【win11 绕过TPM CPU硬件限制安装】

Qt编程指南 VX&#xff1a;hao541022348 ■ 下载iso文件■ 右键文件点击装载出现如下问题■ 绕过TPM CPU硬件限制安装方法■ 虚拟机安装win11 ■ 下载iso文件 选择Windows11 &#xff08;multi-edition ISO&#xff09;在选择中文 ■ 右键文件点击装载出现如下问题 ■ 绕过T…

Socks5代理ip和Https代理ip的区别,该如何选择?

Socks5代理和HTTPS代理都是计算机网络中的代理服务器&#xff0c;它们可以用于在客户端和其他服务器之间建立连接并充当中间人。 两种代理类型都有其优缺点和适用场景。 一、什么是Socks5代理 Socks5代理Socks5代理是一个网络协议&#xff0c;通过该协议可以建立TCP和UDP连接…

RDD算子——转换操作(Transformations )【map、flatMap、reduceByKey】

一、map map 算子 # spark-shell sc.parallelize(Seq(1, 2, 3)).map( num > num * 10).collect()# IDEA Test def mapTest(): Unit {// 1. 创建RDDval rdd1 sc.parallelize(Seq(1, 2, 3))// 2. 执行 map 操作val rdd2 rdd1.map(item > item * 10)// 3. 得到结果val re…

在Kubernetes中优雅地导出和清理Ingress资源

引言 Kubernetes的Ingress资源是定义外部访问集群服务的规则。随着微服务架构和容器化技术的普及&#xff0c;Ingress作为路由流量的关键组件变得愈发重要。当我们需要在环境之间迁移Ingress资源或者备份当前的配置时&#xff0c;就会用到导出功能。然而&#xff0c;直接使用k…

已解决 ValueError: Setting an array element with a sequence. 问题

博主猫头虎的技术世界 &#x1f31f; 欢迎来到猫头虎的博客 — 探索技术的无限可能&#xff01; 专栏链接&#xff1a; &#x1f517; 精选专栏&#xff1a; 《面试题大全》 — 面试准备的宝典&#xff01;《IDEA开发秘籍》 — 提升你的IDEA技能&#xff01;《100天精通Golang》…

Mac 环境多JDK安装与切换

一、下载jdk 去Oracle官网上下载想要安装的jdk版本&#xff0c;M芯片选择arm架构的.bmg格式的文件。 https://www.oracle.com/java/technologies/downloads/。 二、安装jdk 2.1 双击下载的文件&#xff0c;安装步骤一步步点继续就好。 2.2 安装完成后会在/Library/Java/JavaV…

Java网络爬虫--概述与原理

目录标题 基本概念与原理爬虫与搜索系统的关系爬虫运行原理爬虫步骤DNS域名解析 爬虫开发本质网络爬虫的分类通用网络爬虫聚集网络爬虫增量式网络爬虫Deep Web爬虫 参考文献 基本概念与原理 爬虫又叫网络蜘蛛&#xff0c;一种运行在互联网上用来获取数据的自动程序。 互联网的…

高级鉴权网关设计二:SM2国密+协议SPI可扩展+动态配置

​ 上一篇文章是定义切面来做鉴权&#xff0c;针对接口时使用比较方便&#xff0c;还有一种是网关的鉴权如何处理&#xff1f;下面为大家介绍一种比较常用的方案&#xff0c;附带可扩展设计 ​ 既然是网关其实就是和外部的礼尚往来&#xff0c;每个第三方还有可能不一样&#…

2.5 KERNEL FUNCTIONS AND THREADING

我们现在准备讨论更多关于CUDA内核功能以及启动这些内核功能的效果。在CUDA中&#xff0c;内核函数指定所有线程在并行阶段执行的代码。由于所有这些线程执行相同的代码&#xff0c;CUDA编程是众所周知的单程序多数据&#xff08;SPMD&#xff09;[Ata 1998]并行编程风格的实例…

Matlab绘制动态心形线

1. 代码 for alpha0:0.1:30 x-1.8:0.001:1.8; y(x.^2).^(1/3)0.9*(3.3-x.^2).^(1/2).*sin(alpha*pi*x); plot(x,y,r-,LineWidth,1.2); set(gca,YGrid,on); axis([-3,3,-2,4]); text(-2,3.35,$f(x)x^{\frac{2}{3}}0.9(3.3-x^2)^{\frac{1}{2}}sin(\alpha\pi x)$,Interpreter,lat…

如何在整个项目中有效管理成本?

在项目管理方面&#xff0c;没有什么比控制成本更重要。尤其是在项目复杂的情况下&#xff0c;开支可能会让项目成本比预期飙升得更快。项目经理需要采取积极主动的成本管理方法&#xff0c;以保证预算不超支。 项目成本管理的各个阶段 管理项目成本需要在整个项目周期中保持…

【Docker】部署mysql 和 tomcat

目录 部署MySQL 1.搜索镜像 2. 拉取镜像 部署Tomcat 1. 搜索镜像 2.拉取镜像 3.查看镜像 部署MySQL 1.搜索镜像 docker search mysql 2. 拉取镜像 通过mysql 镜像创建对应的容器&#xff0c;并设置端口映射&#xff0c;目录映射 创建mysql 的目录 docker run -id \ …

DataGrip 数据库备份

一、备份 1、找到需要被备份的数据库demo&#xff0c;右键>Import/Export>Export with mysqldump 2、配置路径 点击run&#xff0c;等待完成 导出成功 二、还原 选择 需要导入的数据库>右键>Import/Export>Restore with ‘mysql’ 点击run&#xff0c;刷…

【Python从入门到进阶】46、58同城Scrapy项目案例介绍

接上篇《45、Scrapy框架核心组件介绍》 上一篇我们学习了Scrapy框架的核心组件的使用。本篇我们进入实战第一篇&#xff0c;以58同城的Scrapy项目案例&#xff0c;结合实际再次巩固一下项目结构以及代码逻辑的用法。 一、案例网站介绍 58同城是一个生活服务类平台&#xff0c…

Elasticsearch:Search tutorial - 使用 Python 进行搜索 (三)

这个是继上一篇文章 “Elasticsearch&#xff1a;Serarch tutorial - 使用 Python 进行搜索 &#xff08;二&#xff09;” 的续篇。在今天的文章中&#xff0c;本节将向你介绍一种不同的搜索方式&#xff0c;利用机器学习 (ML) 技术来解释含义和上下文。 向量搜索 嵌入 (embed…

文件系统与日志分析

一&#xff0c;文件系统 &#xff08;一&#xff09;inode 和block概述 1&#xff0c;文件数据包括元信息与实际数据 2&#xff0c;文件存储在硬盘上&#xff0c;硬盘最小存储单位是“扇区”&#xff0c;每个扇区存储512字节 3&#xff0c;block (块) 连续的八个扇区组成一…

OCP NVME SSD规范解读-5.命令超时限制

在"4.7 Command Timeout"章节中&#xff0c;详细定义了NVMe命令的超时要求和限制。 CTO-1&#xff1a;NVMe管理命令和TCG&#xff08;可信计算组&#xff09;命令从提交到完成不应超过10秒&#xff0c;且没有其他命令未完成&#xff08;QD1&#xff09;。CTO-1不适用…

【Python机器学习】构造决策树

通常来说&#xff0c;构造决策树直到所有叶结点都是纯的叶结点&#xff0c;但这会导致模型非常复杂&#xff0c;并且对于训练数据高度过拟合。 为了防止过拟合&#xff0c;有两种常见策略&#xff1a; 1、尽早停止树的生长&#xff0c;也叫预剪枝 2、先构造树&#xff0c;但…