信源编码与信道转移矩阵

news2024/11/17 5:23:30

目录

一. 信息论模型

二. 点对点通信模型

三. 信源编码

四. 信道转移矩阵

4.1 二进制对称信道

4.2 二进制擦除信道

五. 小结

(1)信道直射与反射

(2)信道散射

(3) 信道时变性


一. 信息论模型

1948年,Claude E. Shannon在《A mathematical theory of communication》论文中提出了信息论(information theory)。在点对点的通信中,发射方产生一个信息(比如像素的灰度值,传感器测量的物理量),接收方恢复出该信息。

信源(information source):根据随机性产生消息;

发射机(transmitter):产生信号;

信道(channel):包含噪声源,比如电路的热噪声,无线信道的多径衰落;

接收机(receiver):根据接受信号,恢复出消息;

一般提前已知信源与信道的统计特征,信息论尝试从数学的角度来解释安全传输流程。

二. 点对点通信模型

从模块化的角度来讲,物理层安全通信需要编码和解码的过程。信源编码的本质是压缩。

U^k:信源符号;

M:消息;

X^n:信道编码结果;

Y^n:信道传输结果;

\hat M:信道解码后的消息;

\hat U^k:解码后的信源符号;

三. 信源编码

信源是离散无记忆的DMS(discrete memoryless source),代表产生的符号都是独立同分布的,写做:

(U,P_u)

其中U代表有限字母集(alphabet),P_u代表概率分布,也可以把U看做随机变量。

信源编码写做C_k,其中k代表序列长度。编码后的消息集合为:

M=[1,2^{kR}]

编码函数e可以将k长的信源符号u^k编码成消息m,如下:

e:U^k\to M

解码函数可以将一个消息m解码成k长的信源符号,当然也可能会出现解码失误,如下:

d:M\to U^k\cup\lbrace ?\rbrace

输入长度为k,输出长度为kR,所以压缩率为R。考虑一般性,kR可能非整数,所以压缩率(compression rate)的一般表达形式为:

\frac{1}{k}log\lceil 2^{kR}\rceil

单位为bit/source symbol。

\hat U^k\neq U^k时,则会出现译码错误,由此可定义错误概率:

其中编码译码方案C_k全局已知。在网络安全通信中,我们希望合法端错误概率低,窃听端错误概率高。

四. 信道转移矩阵

信道模型抽象成离散无记忆信道(discrete memoryless channel DMC),表示为:

(X,P_{Y|X},Y)

其中X代表输入字母集,Y代表输出字母集,P_{Y|X}代表条件概率分布,也就是X代表信道输入,Y代表信道输出。

条件概率也可以写做信道转移矩阵,如下:

(P_{Y|X}(y|x))_{X,Y}

4.1 二进制对称信道

二进制对称信道,binary symmetric channel,BSC

BSC(P)也属于离散无记忆信道DMC,写做:

(\lbrace0,1\rbrace,P_{Y|X},\lbrace0,1\rbrace)

输入为0或1,输出为0或1。转移概率为P,代表0变1的概率为P,1变0的概率为P,0变0的概率为1-P,1变1的概率为1-P。写成信道转移矩阵,如下:

4.2 二进制擦除信道

二进制擦除信道,binary erasure channel, BEC

擦除概率写做\epsilon\in [0,1],该信道模型为BEC(\epsilon),同样也属于离散无记忆信道DMC,如下:

(\lbrace0,1\rbrace,P_{Y|X},\lbrace0,?,1\rbrace)

0变成?的概率为\epsilon,0变成0的概率为1-\epsilon,0变成1的概率为0

1变成?的概率为\epsilon,1变成1的概率为1-\epsilon,1变成0的概率为0

写成信道转移矩阵如下:

五. 小结

无线信道具有互易性,时变性和空间唯一性。

典型无线信道环境中电磁波的基本传播机制如下图:

一般认为,无线通信中电波传播机制主要包括直射(direct)、反射(reflection)和散射(Scattering),有的场景还会涉及到折射、穿透等。

(1)信道直射与反射

直射传播指信号直接从发射天线到达接收天线,没有经过任何障碍物的传播方式。这种传播方式在空旷的地区效果最好,信号传输距离远,信噪比高。

反射传播指无线信号在遇到介质表面时,一部分能量被反射回去,沿原路返回,另一部分能量则继续传播的现象。这种传播方式通常发生在金属、水面、建筑物等表面。

反射信号与直射信号叠加在一起,形成多路径传播的效应。

(2)信道散射

散射传播指信号在经过物体表面或介质中微小不规则的颗粒或边缘时,发生多次反射、折射、绕射等现象,使得信号在空间中分散的传播方式。这种传播方式会造成信号的强度分布不均匀,信号失真和多径效应等问题。

另外,存在直射传播的信道被称为视距传输(Line-of-Sight, LOS),而其他传播机制的信道被称为非视距传输(Non-line of Sight, NLOS)。

(3) 信道时变性

无线信道衰落可以分为大尺度衰落和小尺度衰落,又称为快衰落和慢衰落。大尺度衰落是指在信号传输的大范围距离内(一般为数百米以上),由于信号的路径损耗和阴影衰落等因素导致的信号功率变化。大尺度衰落的特点是空间相关性强,变化缓慢,可以通过减小传输距离、使用更高的天线高度、增大发送功率等方法来降低其影响。

小尺度衰落是指在信号传输的短距离范围内(一般为数十米以下),由于信号经历多条不同路径导致的信号幅度和相位的随机变化,包括多径效应和多普勒效应等。小尺度衰落的特点是空间相关性弱,变化快速,可以通过使用合适的调制技术、信号预处理、天线阵列等方法来抑制或利用其特性来提高系统性能。

小尺度衰落,时域上对应多径效应, 频率域上对应多普勒频移效应引发的频率色散。若考虑多输入多输出 MIMO技术,小尺度衰落还需要考虑空域上的特性,即无线信道的空间角度扩展信息。

总的来说,大尺度衰落主要受到距离和环境的影响,而小尺度衰落主要受到多径效应和信号随机性的影响。 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1363533.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

C++ 中的指针和引用有什么区别?

C 中的指针和引用有什么区别? 在开始前我有一些资料,是我根据网友给的问题精心整理了一份「C的资料从专业入门到高级教程」, 点个关注在评论区回复“888”之后私信回复“888”,全部无偿共享给大家!!&#…

自定义View之重写onMeasure

一、重写onMeasure()来修改已有的View的尺寸 步骤: 重写 onMeasure(),并调用 super.onMeasure() 触发原先的测量用 getMeasuredWidth() 和 getMeasuredHeight() 取到之前测得的尺寸,利用这两个尺寸来计算出最终尺寸使用 setMeasuredDimensio…

04-微服务-Nacos

Nacos注册中心 国内公司一般都推崇阿里巴巴的技术,比如注册中心,SpringCloudAlibaba也推出了一个名为Nacos的注册中心。 1.1.认识和安装Nacos Nacos是阿里巴巴的产品,现在是SpringCloud中的一个组件。相比Eureka功能更加丰富,在…

c++比Java更不容易失业吗?

c比Java更不容易失业吗? 在开始前我有一些资料,是我根据网友给的问题精心整理了一份「C的资料从专业入门到高级教程」, 点个关注在评论区回复“888”之后私信回复“888”,全部无偿共享给大家!!&#xff01…

Linux目录切换相关命令( cd命令和pwd命令)

1.cd命令 我们可以通过cd命令,更改当前所在的工作目录。cd命令来自英文:Change Directory 功能:切换工作目录 语法:cd [目标目录] 参数:目标目录,要切换去的地方,不提供默认切换到当前登录用户…

生成式AI在自动化新时代中重塑RPA

生成式AI的兴起正在推动行业的深刻变革,其与RPA技术的结合,标志着自动化领域新时代的到来。这种创新性结合极大地提升了系统的适应性,同时也推动了高级自动化解决方案的发展,为下一代RPA的诞生奠定了坚实的基础。 核心RPA技术专注…

Blazor项目如何调用js文件

以下是来自千问的回答并加以整理:(说一句,文心3.5所给的回答不完善,根本运行不起来,4.0等有钱了试试) 在Blazor项目中引用JavaScript文件(.js)以实现与JavaScript的互操作&#xff…

GAMES101:作业6记录

1 总览 在之前的编程练习中,我们实现了基础的光线追踪算法,具体而言是光线传输、光线与三角形求交。我们采用了这样的方法寻找光线与场景的交点:遍历场景中的所有物体,判断光线是否与它相交。在场景中的物体数量不大时,该做法可以取得良好的结果,但当物体数量增多、模型变得更…

前端JS加密对抗由浅入深-1

前言: 本文主要讲解,针对前端加密数据传输站点,如何进行动态调试以获取加密算法、秘钥,本次实验不涉及漏洞挖掘,仅为学习演示,环境为本地搭建环境 此次站点加密方式为AES加密方式,现如今越来越…

【STM32】STM32学习笔记-DMA直接存储器存储(23)

00. 目录 文章目录 00. 目录01. DMA简介02. DMA主要特性03. 存储器映像04. DMA框图05. DMA基本结构06. DMA请求07. 数据宽度与对齐08. 数据转运DMA09. ADC扫描模式DMA10. 附录 01. DMA简介 小容量产品是指闪存存储器容量在16K至32K字节之间的STM32F101xx、STM32F102xx和STM32F…

Mybatis-Mapper代理开发

Mapper代理开发 目的使用Mapper代理方式入门1.定义与SQL映射文件同名的Mapper接口,并且将Mapper接口和SQL映射文件放置在同一目录下首先新建一个Mapper接口编译mybatis-demo更改sql映射文件路径 2.设置SQL映射文件的namespace属性为Mapper接口全限定名3.在Mapper 接…

论文浅尝 | 以词-词关系进行分类的统一命名实体识别

笔记整理:曹旭东,东南大学硕士,研究方向为知识图谱构建、自然语言处理 链接:https://arxiv.org/abs/2112.10070 1. 动机 在以前的工作中,命名实体识别(NER)涉及的主要问题有三种类型&#xff0c…

Java数据结构:1. 数据结构前置知识

文章目录 一、初识数据结构二、初识集合框架1. 什么是集合框架2. 集合框架的重要性3. 背后所涉及的数据结构以及算法 三、时间复杂度空间复杂度1. 算法效率2. 时间复杂度(1)概念(2)大O的渐进表示法(3)推导大…

欧几里得算法总结

知识概览 欧几里得算法也叫辗转相除法,核心原理是(a, b) (b, a mod b),时间复杂度为O(logn)。 例题展示 题目链接 活动 - AcWing 系统讲解常用算法与数据结构,给出相应代码模板,并会布置、讲解相应的基础算法题目。https://www…

了解统计分类中的贝叶斯理论误差限

一、介绍 统计分类和机器学习领域正在不断发展,努力提高预测模型的准确性和效率。这些进步的核心在于一个基本基准,即贝叶斯理论误差极限。这个概念深深植根于概率和统计学,是理解分类算法的局限性和潜力的基石。本文深入探讨了贝叶斯错误率的…

Java技术栈 —— Hadoop入门(一)

Java技术栈 —— Hadoop入门(一) 一、Hadoop第一印象二、安装Hadoop三、Hadoop解析3.1 Hadoop生态介绍3.1.1 MapReduce - 核心组件3.1.2 HDFS - 核心组件3.1.3 YARN - 核心组件3.1.4 其它组件3.1.4.1 HBase3.1.4.2 Hive3.1.4.3 Spark 一、Hadoop第一印象…

用通俗易懂的方式讲解:万字长文带你入门大模型

告别2023,迎接2024。大模型技术已成为业界关注焦点,你是否也渴望掌握这一领域却又不知从何学起? 本篇文章将特别针对入门新手,以浅显易懂的方式梳理大模型的发展历程、核心网络结构以及数据微调等关键技术。 如果你在阅读中收获…

NJIT数据结构期末复习

任何时候学习都不算晚&#xff0c;保持终身学习&#xff01;&#xff01;&#xff01; 数据结构期末复习 第一章 1.以下程序段的时间复杂是多少&#xff1f; int sum 0; for(i1;i<n;i) { for(j1;j<n;j) { sum; } } 答&#xff1a;O(n^2) 第二章 2.遍历单链表&…

【计算机组成原理】总复习笔记(上)

特别声明&#xff1a; 本文仅供参考&#xff0c;本文部分内容来自AI总结、网络搜集与个人实践。如果任何信息存在错误,欢迎读者批评指正。本文仅用于学习交流,不用作任何商业用途。 文章目录 第 1 章 计算机系统概述1.1 冯诺依曼计算机结构1.2 高级语言与机器级目标代码1.3 计算…

【AI】搭建Windows Linux子系统(WSL2)CUDA环境

0.准备工作 Windows本机安装CUDA Driver 首先去下载页面下载驱动文件 点击Get CUDA Driver进入下载页面&#xff0c;我看下载页面跟普通驱动下载页面相同&#xff0c;感觉应该不是单独的驱动&#xff0c;只要之前显卡已经安装好了CUDA的驱动&#xff0c;就可以先省略这一步。…