自定义View之重写onMeasure

news2025/1/12 6:46:21

一、重写onMeasure()来修改已有的View的尺寸

步骤

  1. 重写 onMeasure(),并调用 super.onMeasure() 触发原先的测量
  2. 用 getMeasuredWidth() 和 getMeasuredHeight() 取到之前测得的尺寸,利用这两个尺寸来计算出最终尺寸
  3. 使用 setMeasuredDimension() 保存尺寸

代码:


    @Override
    protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
       //先执行原测量算法
        super.onMeasure(widthMeasureSpec, heightMeasureSpec);
        //获取原先的测量结果
        int measureWidth=getMeasuredWidth();
        int measureHeight=getMeasuredHeight();
        //利用原先的测量结果计算出新的尺寸
        if(measureWidth>measureHeight){
            measureWidth=measureHeight;
        }else{
            measureHeight=measureWidth;
        }
        //保存计算后的结果
        setMeasuredDimension(measureWidth,measureHeight);
    }
​

二、重写onMeasure()来全新计算自定义View的尺寸

步骤:

  1. 重写 onMeasure0) 把尺寸计算出来
  2. 把计算的结果用 resolveSize() 过滤一遍后保存

  @Override
    protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
        ...
        measuredWidth=...;
        measuredHeight=...;
        
        measuredWidth=resolveSize(measuredWidth,widthMeasureSpec);
        measuredHeight=resolveSize(measuredHeight,heightMeasureSpec);
        
        setMeasuredDimension(measuredWidth,measuredHeight);
    }

       onMeasure()方法的两个参数 widthMeasureSpec和heightMeasureSpec是父View对子View的尺寸限制,子View在计算自己尺寸的时候,需要遵守这两个参数所包含的限制MeasureSpec。

理解MeasureSpec

在 Android 中,View 的大小是由父容器和 View 自身的测量规格(MeasureSpec)共同决定的。

MeasureSpec 由大小和测量模式组成,测量模式有三种取值:

  1. UNSPECIFIED(未指定):父容器对子 View 没有施加任何限制,子 View 可以任意大小。

  2. EXACTLY(精确):父容器已经为子 View 精确指定了大小,子 View 应该匹配这个大小。

  3. AT_MOST(至多):子 View 可以是任何大小,但不能超过父容器指定的大小。

MeasureSpec 是通过静态方法 MeasureSpec.makeMeasureSpec() 创建的,该方法接受两个参数:大小和测量模式。在自定义 View 或者自定义布局中,我们通常会使用 MeasureSpec 来测量子 View 的大小,并根据测量模式来决定子 View 的大小。

在自定义 View 中,我们通常会在 onMeasure() 方法中使用 MeasureSpec 来测量 View 的大小。在这个方法中,我们可以通过 MeasureSpec.getMode() 和 MeasureSpec.getSize() 方法来获取测量模式和大小,然后根据这些信息来确定 View 的最终大小。

解释resolveSize()这个方法:

//代码简化,不是源码
public static int resolveSize(int size, int measureSpec) {
      final int specMode = MeasureSpec.getMode(measureSpec);
        final int specSize = MeasureSpec.getSize(measureSpec);
         switch (specMode) {
            case MeasureSpec.AT_MOST:
                if (specSize < size) {
                    result = specSize | MEASURED_STATE_TOO_SMALL;
                } else {
                    result = size;
                }
                break;
            case MeasureSpec.EXACTLY:
                result = specSize;
                break;
            case MeasureSpec.UNSPECIFIED:
            default:
                result = size;
        }
}

resolveSize()这个方法,父View传进来的尺寸限制measureSpec是由类型和尺寸值组成的,首先要调用MeasureSpec.getMode(measureSpec)方法和MeasureSpec.getSize(measureSpec)方法获取限制measureSpec的类型mode和size尺寸值。

限制的类型mode:

MeasureSpec.AT_MOST 限制上线

MeasureSpec.EXACTLY 限制固定尺寸

MeasureSpec.UNSPECIFIED 无限制

三、重写onMeasure()和onLayout()来全新计算自定义ViewGroup的内部布局

onMeasure()的重写,对于ViewGroup来说,包含三部分内容:

步骤:

  1. 调用每个子View的measure(),让子View自我测量
  2. 根据子View给出的尺寸,得出子View的位置,并保存它们的位置和尺寸
  3. 根据子View的位置和尺寸计算出自己的尺寸,并用setMeasuredDimension()保存

理解LayoutParams

       在父View里调用子View的getLayoutParams()方法,可以获得一个LayoutParams对象,它包含了xml文件里的layout_打头的参数的对应值,其中它的width和height这两个属性就分别对应了layout_width和layout_height的值,并且是转换过了的值。

    @Override
    protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
​
        for(int i=0;i<getChildCount();i++){
            View childView=getChildAt(i);
            LayoutParams lp=childView.getLayoutParams();
            //lp.height   lp.width
        }
    }

结合自己的可用空间来计算出对子View的宽度和高度的限制

可以根据layout_width和layout_height的值,分成三种情况:

第一种情况:固定值

不需要考虑可用空间的问题,直接用EXACTLY把子View尺寸限制为这个固定值就可以了。

第二种情况:match_parent

把子View的尺寸限制为固定值可用宽度或者高度

可用空间的判断方法:

根据自己的MeasureSpec中mode的不同:

1.EXACTLY/AT_MOST   可用空间:MeasureSpec中的size

2.UNSPECIFIED     可用空间:无限大

第三种情况:wrap_content

不能超过父View的边界的情况下,子View自己测量

public class SomeView extends ViewGroup {
...

 @Override
    protected void onMeasure(int widthMeasureSpec, int heightMeasureSpec) {
        ...
        for(int i=0;i<getChildCount();i++){
            View childView=getChildAt(i);

            LayoutParams lp=childView.getLayoutParams();
            int selfwidthSpecMode=MeasureSpec.getMode(widthMeasureSpec);
            int selfwidthSpecSize=MeasureSpec.getSize(widthMeasureSpec);
            switch (lp.width){
                case MATCH_PARENT:
                    if(selfwidthSpecMode==EXACTLY||selfwidthSpecMode==MeasureSpec.AT_MOST){
                        childWidthSpec=MeasureSpec.makeMeasureSpec(selfwidthSpecSize-usedWidth,EXACTLY);
                    }else{
                        childWidthSpec=MeasureSpec.makeMeasureSpec(0,MeasureSpec.UNSPECIFIED);
                    }
                    break;
                case  WRAP_CONTENT:
                    if(selfwidthSpecMode==EXACTLY||selfwidthSpecMode==MeasureSpec.AT_MOST){
                        childWidthSpec=MeasureSpec.makeMeasureSpec(selfwidthSpecSize-usedWidth,MeasureSpec.AT_MOST);
                    }else{
                        childWidthSpec=MeasureSpec.makeMeasureSpec(0,MeasureSpec.UNSPECIFIED);
                    }
                    break;
                default:
                    childWidthSpec=MeasureSpec.makeMeasureSpec(lp.width, EXACTLY);
                    break;
            }
        }
    }
}

关于保存子View位置的两点说明

1.不是所有的Layout都需要保存子View的位置(因为有的Layout可以在布局阶段实时推导出子View的位置,例如LinearLayout)

2.有时候对某些子View需要重复测量两次或多次才能得到正确的尺寸和位置

重写onLayout()来摆放子View

    @Override
    protected void onLayout(boolean changed, int l, int t, int r, int b) {
        for(int i=0;i<getChildCount();i++){
            View childView=getChildAt(i);
            childView.layout(childLeft[i],childTop[i],childRight[i],childBottom[i]);
        }
    }

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1363529.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

04-微服务-Nacos

Nacos注册中心 国内公司一般都推崇阿里巴巴的技术&#xff0c;比如注册中心&#xff0c;SpringCloudAlibaba也推出了一个名为Nacos的注册中心。 1.1.认识和安装Nacos Nacos是阿里巴巴的产品&#xff0c;现在是SpringCloud中的一个组件。相比Eureka功能更加丰富&#xff0c;在…

c++比Java更不容易失业吗?

c比Java更不容易失业吗&#xff1f; 在开始前我有一些资料&#xff0c;是我根据网友给的问题精心整理了一份「C的资料从专业入门到高级教程」&#xff0c; 点个关注在评论区回复“888”之后私信回复“888”&#xff0c;全部无偿共享给大家&#xff01;&#xff01;&#xff01…

Linux目录切换相关命令( cd命令和pwd命令)

1.cd命令 我们可以通过cd命令&#xff0c;更改当前所在的工作目录。cd命令来自英文&#xff1a;Change Directory 功能&#xff1a;切换工作目录 语法&#xff1a;cd [目标目录] 参数&#xff1a;目标目录&#xff0c;要切换去的地方&#xff0c;不提供默认切换到当前登录用户…

生成式AI在自动化新时代中重塑RPA

生成式AI的兴起正在推动行业的深刻变革&#xff0c;其与RPA技术的结合&#xff0c;标志着自动化领域新时代的到来。这种创新性结合极大地提升了系统的适应性&#xff0c;同时也推动了高级自动化解决方案的发展&#xff0c;为下一代RPA的诞生奠定了坚实的基础。 核心RPA技术专注…

Blazor项目如何调用js文件

以下是来自千问的回答并加以整理&#xff1a;&#xff08;说一句&#xff0c;文心3.5所给的回答不完善&#xff0c;根本运行不起来&#xff0c;4.0等有钱了试试&#xff09; 在Blazor项目中引用JavaScript文件&#xff08;.js&#xff09;以实现与JavaScript的互操作&#xff…

GAMES101:作业6记录

1 总览 在之前的编程练习中,我们实现了基础的光线追踪算法,具体而言是光线传输、光线与三角形求交。我们采用了这样的方法寻找光线与场景的交点:遍历场景中的所有物体,判断光线是否与它相交。在场景中的物体数量不大时,该做法可以取得良好的结果,但当物体数量增多、模型变得更…

前端JS加密对抗由浅入深-1

前言&#xff1a; 本文主要讲解&#xff0c;针对前端加密数据传输站点&#xff0c;如何进行动态调试以获取加密算法、秘钥&#xff0c;本次实验不涉及漏洞挖掘&#xff0c;仅为学习演示&#xff0c;环境为本地搭建环境 此次站点加密方式为AES加密方式&#xff0c;现如今越来越…

【STM32】STM32学习笔记-DMA直接存储器存储(23)

00. 目录 文章目录 00. 目录01. DMA简介02. DMA主要特性03. 存储器映像04. DMA框图05. DMA基本结构06. DMA请求07. 数据宽度与对齐08. 数据转运DMA09. ADC扫描模式DMA10. 附录 01. DMA简介 小容量产品是指闪存存储器容量在16K至32K字节之间的STM32F101xx、STM32F102xx和STM32F…

Mybatis-Mapper代理开发

Mapper代理开发 目的使用Mapper代理方式入门1.定义与SQL映射文件同名的Mapper接口&#xff0c;并且将Mapper接口和SQL映射文件放置在同一目录下首先新建一个Mapper接口编译mybatis-demo更改sql映射文件路径 2.设置SQL映射文件的namespace属性为Mapper接口全限定名3.在Mapper 接…

论文浅尝 | 以词-词关系进行分类的统一命名实体识别

笔记整理&#xff1a;曹旭东&#xff0c;东南大学硕士&#xff0c;研究方向为知识图谱构建、自然语言处理 链接&#xff1a;https://arxiv.org/abs/2112.10070 1. 动机 在以前的工作中&#xff0c;命名实体识别&#xff08;NER&#xff09;涉及的主要问题有三种类型&#xff0c…

Java数据结构:1. 数据结构前置知识

文章目录 一、初识数据结构二、初识集合框架1. 什么是集合框架2. 集合框架的重要性3. 背后所涉及的数据结构以及算法 三、时间复杂度空间复杂度1. 算法效率2. 时间复杂度&#xff08;1&#xff09;概念&#xff08;2&#xff09;大O的渐进表示法&#xff08;3&#xff09;推导大…

欧几里得算法总结

知识概览 欧几里得算法也叫辗转相除法&#xff0c;核心原理是(a, b) (b, a mod b)&#xff0c;时间复杂度为O(logn)。 例题展示 题目链接 活动 - AcWing 系统讲解常用算法与数据结构&#xff0c;给出相应代码模板&#xff0c;并会布置、讲解相应的基础算法题目。https://www…

了解统计分类中的贝叶斯理论误差限

一、介绍 统计分类和机器学习领域正在不断发展&#xff0c;努力提高预测模型的准确性和效率。这些进步的核心在于一个基本基准&#xff0c;即贝叶斯理论误差极限。这个概念深深植根于概率和统计学&#xff0c;是理解分类算法的局限性和潜力的基石。本文深入探讨了贝叶斯错误率的…

Java技术栈 —— Hadoop入门(一)

Java技术栈 —— Hadoop入门&#xff08;一&#xff09; 一、Hadoop第一印象二、安装Hadoop三、Hadoop解析3.1 Hadoop生态介绍3.1.1 MapReduce - 核心组件3.1.2 HDFS - 核心组件3.1.3 YARN - 核心组件3.1.4 其它组件3.1.4.1 HBase3.1.4.2 Hive3.1.4.3 Spark 一、Hadoop第一印象…

用通俗易懂的方式讲解:万字长文带你入门大模型

告别2023&#xff0c;迎接2024。大模型技术已成为业界关注焦点&#xff0c;你是否也渴望掌握这一领域却又不知从何学起&#xff1f; 本篇文章将特别针对入门新手&#xff0c;以浅显易懂的方式梳理大模型的发展历程、核心网络结构以及数据微调等关键技术。 如果你在阅读中收获…

NJIT数据结构期末复习

任何时候学习都不算晚&#xff0c;保持终身学习&#xff01;&#xff01;&#xff01; 数据结构期末复习 第一章 1.以下程序段的时间复杂是多少&#xff1f; int sum 0; for(i1;i<n;i) { for(j1;j<n;j) { sum; } } 答&#xff1a;O(n^2) 第二章 2.遍历单链表&…

【计算机组成原理】总复习笔记(上)

特别声明&#xff1a; 本文仅供参考&#xff0c;本文部分内容来自AI总结、网络搜集与个人实践。如果任何信息存在错误,欢迎读者批评指正。本文仅用于学习交流,不用作任何商业用途。 文章目录 第 1 章 计算机系统概述1.1 冯诺依曼计算机结构1.2 高级语言与机器级目标代码1.3 计算…

【AI】搭建Windows Linux子系统(WSL2)CUDA环境

0.准备工作 Windows本机安装CUDA Driver 首先去下载页面下载驱动文件 点击Get CUDA Driver进入下载页面&#xff0c;我看下载页面跟普通驱动下载页面相同&#xff0c;感觉应该不是单独的驱动&#xff0c;只要之前显卡已经安装好了CUDA的驱动&#xff0c;就可以先省略这一步。…

使用 CMake 和 Ninja 构建 C/C++ 项目的教程

使用 CMake 和 Ninja 构建 C/C 项目的教程 CMake 是一个跨平台的开源构建工具&#xff0c;它简化了项目的构建过程。而 Ninja 是一个快速、轻量级的构建系统&#xff0c;与 CMake 配合使用可以提高项目的构建效率。本教程将向你介绍如何使用 CMake 和 Ninja 来构建你的 C/C 项…

灰色关联分析

&#xff08;相关性分析&#xff09;反映关系有多么紧密 “在系统发展过程中&#xff0c;若两个因素变化的趋势具有一致性&#xff0c;即同步变化程度较高&#xff0c;即可谓二者关联程度较高&#xff1b;反之&#xff0c;则较低。因此&#xff0c;灰色关联分析方法&#xff0…