GoogLenet网络详解

news2024/9/20 14:54:12

GoogLenet

VGG在2014年由牛津大学著名研究组vGG (Visual Geometry Group)提出,斩获该年lmageNet竞赛中Localization Task (定位任务)第一名和 Classification Task (分类任务)第二名。Classification Task (分类任务)的第一名则是GoogleNet 。GoogleNet是Google研发的深度网络结构,之所以叫“GoogLeNet”,是为了向“LeNet”致敬。

GoogLenet网络亮点

1.引入了Inception结构(融合不同尺度的特征信息)
2.使用1x1的卷积核进行降维以及映射处理
3.添加两个辅助分类器帮助训练
4.丢弃全连接层,使用平均池化层(大大减少模型参数)

Inception结构

在这里插入图片描述
Inception Module基本组成结构有四个成分。1x1卷积,3x3卷积,5x5卷积,3x3最大池化。最后对四个成分运算结果进行通道上组合,这就是Naive Inception(上图a)的核心思想:利用不同大小的卷积核实现不同尺度的感知,最后进行融合,可以得到图像更好的表征。注意,每个分支得到的特征矩阵高和宽必须相同。但是Naive Inception有两个非常严重的问题:首先,所有卷积层直接和前一层输入的数据对接,所以卷积层中的计算量会很大;其次,在这个单元中使用的最大池化层保留了输入数据的特征图的深度,所以在最后进行合并时,总的输出的特征图的深度只会增加,这样增加了该单元之后的网络结构的计算量。所以这里使用1x1 卷积核主要目的是进行压缩降维,减少参数量,也就是上图b,从而让网络更深、更宽,更好的提取特征,这种思想也称为Pointwise Conv,简称PW。

小算一下,假设输入图像的通道是512,使用64个5x5的卷积核进行卷积,不使用1x1卷积核降维需要的参数为512x64x5x5=819200。若使用24个1x1的卷积核降维,得到图像通道为24,再与65个卷积核进行卷积,此时需要的参数为512x24x1x1+24x65x5x5=50688。

辅助分类器

根据实验数据,发现神经网络的中间层也具有很强的识别能力,为了利用中间层抽象的特征,在某些中间层中添加含有多层的分类器。如下图所示,红色边框内部代表添加的辅助分类器。GoogLeNet中共增加了两个辅助的softmax分支,作用有两点,一是为了避免梯度消失,用于向前传导梯度。反向传播时如果有一层求导为0,链式求导结果则为0。二是将中间某一层输出用作分类,起到模型融合作用。最后的loss=loss_2 + 0.3 * loss_1 + 0.3 * loss_0。实际测试时,这两个辅助softmax分支会被去掉。

在这里插入图片描述

1.平均池化层

窗口大小为5×5,步幅为3,结果是(4a)的输出为4×4×512, (4d)阶段的输出为4×4×528。

2.卷积层

128个1×1卷积核进行卷积(降维),使用ReLU激活函数。

3.全连接层

1024个结点的全连接层,同样使用ReLU激活函数。

4.dropout

dropout,以70%比例随机失活神经元。

5.softmax

通过softmax输出1000个预测结果。

GoogLenet网络结构

在这里插入图片描述
用表格的形式表示GoogLeNet的网络结构如下所示:
在这里插入图片描述
Inception结构的参数怎么看呢?在下面这张图标注出来了。
在这里插入图片描述
下面就来详细介绍一下GoogLeNet的模型结构。

1.卷积层

在这里插入图片描述
输入图像为224x224x3,卷积核大小7x7,步长为2,padding为3,输出通道数64,输出大小为(224-7+3x2)/2+1=112.5(向下取整)=112,输出为112x112x64,卷积后进行ReLU操作。

2.最大池化层

在这里插入图片描述

窗口大小3x3,步长为2,输出大小为((112 -3)/2)+1=55.5(向上取整)=56,输出为56x56x64。

3.两层卷积层

在这里插入图片描述

第一层:用64个1x1的卷积核(3x3卷积核之前的降维)将输入的特征图(56x56x64)变为56x56x64,然后进行ReLU操作。

第二层:用卷积核大小3x3,步长为1,padding为1,输出通道数192,进行卷积运算,输出大小为(56-3+1x2)/1+1=56,输出为56x56x192,然后进行ReLU操作。

4. 最大池化层

在这里插入图片描述

窗口大小3x3,步长为2,输出通道数192,输出为((56 - 3)/2)+1=27.5(向上取整)=28,输出特征图维度为28x28x192。

5.Inception 3a

在这里插入图片描述
1.使用64个1x1的卷积核,卷积后输出为28x28x64,然后RuLU操作。
2.96个1x1的卷积核(3x3卷积核之前的降维)卷积后输出为28x28x96,进行ReLU计算,再进行128个3x3的卷积,输出28x28x128。
3.16个1x1的卷积核(5x5卷积核之前的降维)卷积后输出为28x28x16,进行ReLU计算,再进行32个5x5的卷积,输出28x28x32。
4.最大池化层,窗口大小3x3,输出28x28x192,然后进行32个1x1的卷积,输出28x28x32.。

6.Inception 3b

在这里插入图片描述

7.最大池化层

在这里插入图片描述

8.Inception 4a 4b 4c 4d 4e

在这里插入图片描述

9.最大池化层

在这里插入图片描述

10.Inception 5a 5b

在这里插入图片描述

11.输出层

在这里插入图片描述
GoogLeNet采用平均池化层,得到高和宽均为1的卷积层;然后dropout,以40%随机失活神经元;输出层激活函数采用的是softmax。

GoogLenet实现

Inception实现
class Inception(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
        super(Inception, self).__init__()

        self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)

        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3red, kernel_size=1),
            BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)   # 保证输出大小等于输入大小
        )

        self.branch3 = nn.Sequential(
            BasicConv2d(in_channels, ch5x5red, kernel_size=1),
            # 在官方的实现中,其实是3x3的kernel并不是5x5,这里我也懒得改了,具体可以参考下面的issue
            # Please see https://github.com/pytorch/vision/issues/906 for details.
            BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)   # 保证输出大小等于输入大小
        )

        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            BasicConv2d(in_channels, pool_proj, kernel_size=1)
        )

    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)

        outputs = [branch1, branch2, branch3, branch4]
        return torch.cat(outputs, 1)
GoogLenet实现
import torch.nn as nn
import torch
import torch.nn.functional as F


class GoogLeNet(nn.Module):
    def __init__(self, num_classes=1000, aux_logits=True, init_weights=False):
        super(GoogLeNet, self).__init__()
        self.aux_logits = aux_logits

        self.conv1 = BasicConv2d(3, 64, kernel_size=7, stride=2, padding=3)
        self.maxpool1 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.conv2 = BasicConv2d(64, 64, kernel_size=1)
        self.conv3 = BasicConv2d(64, 192, kernel_size=3, padding=1)
        self.maxpool2 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception3a = Inception(192, 64, 96, 128, 16, 32, 32)
        self.inception3b = Inception(256, 128, 128, 192, 32, 96, 64)
        self.maxpool3 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception4a = Inception(480, 192, 96, 208, 16, 48, 64)
        self.inception4b = Inception(512, 160, 112, 224, 24, 64, 64)
        self.inception4c = Inception(512, 128, 128, 256, 24, 64, 64)
        self.inception4d = Inception(512, 112, 144, 288, 32, 64, 64)
        self.inception4e = Inception(528, 256, 160, 320, 32, 128, 128)
        self.maxpool4 = nn.MaxPool2d(3, stride=2, ceil_mode=True)

        self.inception5a = Inception(832, 256, 160, 320, 32, 128, 128)
        self.inception5b = Inception(832, 384, 192, 384, 48, 128, 128)

        if self.aux_logits:
            self.aux1 = InceptionAux(512, num_classes)
            self.aux2 = InceptionAux(528, num_classes)

        self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
        self.dropout = nn.Dropout(0.4)
        self.fc = nn.Linear(1024, num_classes)
        if init_weights:
            self._initialize_weights()

    def forward(self, x):
        # N x 3 x 224 x 224
        x = self.conv1(x)
        # N x 64 x 112 x 112
        x = self.maxpool1(x)
        # N x 64 x 56 x 56
        x = self.conv2(x)
        # N x 64 x 56 x 56
        x = self.conv3(x)
        # N x 192 x 56 x 56
        x = self.maxpool2(x)

        # N x 192 x 28 x 28
        x = self.inception3a(x)
        # N x 256 x 28 x 28
        x = self.inception3b(x)
        # N x 480 x 28 x 28
        x = self.maxpool3(x)
        # N x 480 x 14 x 14
        x = self.inception4a(x)
        # N x 512 x 14 x 14
        if self.training and self.aux_logits:    # eval model lose this layer
            aux1 = self.aux1(x)

        x = self.inception4b(x)
        # N x 512 x 14 x 14
        x = self.inception4c(x)
        # N x 512 x 14 x 14
        x = self.inception4d(x)
        # N x 528 x 14 x 14
        if self.training and self.aux_logits:    # eval model lose this layer
            aux2 = self.aux2(x)

        x = self.inception4e(x)
        # N x 832 x 14 x 14
        x = self.maxpool4(x)
        # N x 832 x 7 x 7
        x = self.inception5a(x)
        # N x 832 x 7 x 7
        x = self.inception5b(x)
        # N x 1024 x 7 x 7

        x = self.avgpool(x)
        # N x 1024 x 1 x 1
        x = torch.flatten(x, 1)
        # N x 1024
        x = self.dropout(x)
        x = self.fc(x)
        # N x 1000 (num_classes)
        if self.training and self.aux_logits:   # eval model lose this layer
            return x, aux2, aux1
        return x

    def _initialize_weights(self):
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
                if m.bias is not None:
                    nn.init.constant_(m.bias, 0)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.constant_(m.bias, 0)


class Inception(nn.Module):
    def __init__(self, in_channels, ch1x1, ch3x3red, ch3x3, ch5x5red, ch5x5, pool_proj):
        super(Inception, self).__init__()

        self.branch1 = BasicConv2d(in_channels, ch1x1, kernel_size=1)

        self.branch2 = nn.Sequential(
            BasicConv2d(in_channels, ch3x3red, kernel_size=1),
            BasicConv2d(ch3x3red, ch3x3, kernel_size=3, padding=1)   # 保证输出大小等于输入大小
        )

        self.branch3 = nn.Sequential(
            BasicConv2d(in_channels, ch5x5red, kernel_size=1),
            # 在官方的实现中,其实是3x3的kernel并不是5x5,这里我也懒得改了,具体可以参考下面的issue
            # Please see https://github.com/pytorch/vision/issues/906 for details.
            BasicConv2d(ch5x5red, ch5x5, kernel_size=5, padding=2)   # 保证输出大小等于输入大小
        )

        self.branch4 = nn.Sequential(
            nn.MaxPool2d(kernel_size=3, stride=1, padding=1),
            BasicConv2d(in_channels, pool_proj, kernel_size=1)
        )

    def forward(self, x):
        branch1 = self.branch1(x)
        branch2 = self.branch2(x)
        branch3 = self.branch3(x)
        branch4 = self.branch4(x)

        outputs = [branch1, branch2, branch3, branch4]
        return torch.cat(outputs, 1)


class InceptionAux(nn.Module):
    def __init__(self, in_channels, num_classes):
        super(InceptionAux, self).__init__()
        self.averagePool = nn.AvgPool2d(kernel_size=5, stride=3)
        self.conv = BasicConv2d(in_channels, 128, kernel_size=1)  # output[batch, 128, 4, 4]

        self.fc1 = nn.Linear(2048, 1024)
        self.fc2 = nn.Linear(1024, num_classes)

    def forward(self, x):
        # aux1: N x 512 x 14 x 14, aux2: N x 528 x 14 x 14
        x = self.averagePool(x)
        # aux1: N x 512 x 4 x 4, aux2: N x 528 x 4 x 4
        x = self.conv(x)
        # N x 128 x 4 x 4
        x = torch.flatten(x, 1)
        x = F.dropout(x, 0.5, training=self.training)
        # N x 2048
        x = F.relu(self.fc1(x), inplace=True)
        x = F.dropout(x, 0.5, training=self.training)
        # N x 1024
        x = self.fc2(x)
        # N x num_classes
        return x


class BasicConv2d(nn.Module):
    def __init__(self, in_channels, out_channels, **kwargs):
        super(BasicConv2d, self).__init__()
        self.conv = nn.Conv2d(in_channels, out_channels, **kwargs)
        self.relu = nn.ReLU(inplace=True)

    def forward(self, x):
        x = self.conv(x)
        x = self.relu(x)
        return x

训练模型
import os
import sys
import json

import torch
import torch.nn as nn
from torchvision import transforms, datasets
import torch.optim as optim
from tqdm import tqdm

from model import GoogLeNet


def main():
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
    print("using {} device.".format(device))

    data_transform = {
        "train": transforms.Compose([transforms.RandomResizedCrop(224),
                                     transforms.RandomHorizontalFlip(),  # 随机左右翻转
                                     # transforms.RandomVerticalFlip(), # 随机上下翻转
                                     transforms.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5, hue=0.1),
                                     transforms.RandomRotation(degrees=5),
                                     transforms.ToTensor(),
                                     transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]),
        "val": transforms.Compose([transforms.Resize((224, 224)),
                                   transforms.ToTensor(),
                                   transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])}

    train_dataset = datasets.ImageFolder(root='./Training',
                                         transform=data_transform["train"])
    train_num = len(train_dataset)
    flower_list = train_dataset.class_to_idx
    cla_dict = dict((val, key) for key, val in flower_list.items())
    json_str = json.dumps(cla_dict, indent=4)
    with open(
            'class_indices.json', 'w') as json_file:
        json_file.write(json_str)

    batch_size = 32
    nw = min([os.cpu_count(), batch_size if batch_size > 1 else 0, 8])  # number of workers
    print('Using {} dataloader workers every process'.format(nw))

    train_loader = torch.utils.data.DataLoader(train_dataset,
                                               batch_size=batch_size, shuffle=True,
                                               num_workers=nw)

    validate_dataset = datasets.ImageFolder(root='./Test',
                                            transform=data_transform["val"])
    val_num = len(validate_dataset)
    validate_loader = torch.utils.data.DataLoader(validate_dataset,
                                                  batch_size=batch_size, shuffle=False,
                                                  num_workers=nw)

    print("using {} images for training, {} images for validation.".format(train_num, val_num))

    # test_data_iter = iter(validate_loader)
    # test_image, test_label = test_data_iter.next()

    net = GoogLeNet(num_classes=131, aux_logits=True, init_weights=True)  # num_classes根据分类的数量而定
    # 如果要使用官方的预训练权重,注意是将权重载入官方的模型,不是我们自己实现的模型
    # 官方的模型中使用了bn层以及改了一些参数,不能混用
    # import torchvision
    # net = torchvision.models.googlenet(num_classes=5)
    # model_dict = net.state_dict()
    # # 预训练权重下载地址: https://download.pytorch.org/models/googlenet-1378be20.pth
    # pretrain_model = torch.load("googlenet.pth")
    # del_list = ["aux1.fc2.weight", "aux1.fc2.bias",
    #             "aux2.fc2.weight", "aux2.fc2.bias",
    #             "fc.weight", "fc.bias"]
    # pretrain_dict = {k: v for k, v in pretrain_model.items() if k not in del_list}
    # model_dict.update(pretrain_dict)
    # net.load_state_dict(model_dict)
    net.to(device)
    loss_function = nn.CrossEntropyLoss()
    optimizer = optim.Adam(net.parameters(), lr=0.0003)

    epochs = 30
    best_acc = 0.0
    save_path = './googleNet.pth'
    train_steps = len(train_loader)
    for epoch in range(epochs):
        # train
        net.train()
        running_loss = 0.0
        train_bar = tqdm(train_loader, file=sys.stdout)
        for step, data in enumerate(train_bar):
            images, labels = data
            optimizer.zero_grad()
            logits, aux_logits2, aux_logits1 = net(images.to(device))
            loss0 = loss_function(logits, labels.to(device))
            loss1 = loss_function(aux_logits1, labels.to(device))
            loss2 = loss_function(aux_logits2, labels.to(device))
            loss = loss0 + loss1 * 0.3 + loss2 * 0.3
            loss.backward()
            optimizer.step()

            # print statistics
            running_loss += loss.item()

            train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,
                                                                     epochs,
                                                                     loss)

        # validate
        net.eval()
        acc = 0.0  # accumulate accurate number / epoch
        with torch.no_grad():
            val_bar = tqdm(validate_loader, file=sys.stdout)
            for val_data in val_bar:
                val_images, val_labels = val_data
                outputs = net(val_images.to(device))  # eval model only have last output layer
                predict_y = torch.max(outputs, dim=1)[1]
                acc += torch.eq(predict_y, val_labels.to(device)).sum().item()

        val_accurate = acc / val_num
        print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %
              (epoch + 1, running_loss / train_steps, val_accurate))

        if val_accurate > best_acc:
            best_acc = val_accurate
            torch.save(net.state_dict(), save_path)

    print('Finished Training')


if __name__ == '__main__':
    main()


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/13393.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue-router 使用与原理分析,测试结果来啦

简介 Vue Router 是Vue.js的官方路由。与Vue.js核心深度集成,让用Vue.js构建单页应用(SPA)变得更加简单。 对于开发和维护管理后台类的前端项目,页面结构和组合可能非常复杂,所以正确的理解和使用Vue Router就显得尤为…

[附源码]SSM计算机毕业设计ssm新冠疫苗预约接种信息管理JAVA

项目运行 环境配置: Jdk1.8 Tomcat7.0 Mysql HBuilderX(Webstorm也行) Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。 项目技术: SSM mybatis Maven Vue 等等组成,B/S模式 M…

Spring事务管理

认识事务 可以把一系列(多条sql语句)要执行的操作称为事务,而事务管理就是管理这些操作要么完全执行,要么完全不执行(很经典的一个例子是:A要给B转钱,首先A的钱减少了,但是突然的数…

EMQX数据流转MySQL踩坑日记:EMQX VER 4.2.3

总结: (0)数据库报错问题,详细参考这篇文档,链接,ln -s 源 目标 https://blog.csdn.net/weixin_42110159/article/details/118945136 (1)数据库建立数据,要注意大小写&am…

数字化开采|AIRIOT智慧矿山自动化生产解决方案

由于矿山地形复杂,生产自动化水平低,安全监管技术落后,事故频发等很多因素对煤矿开采技术提出了数据化、可视化、智能化的要求。通过目前的煤矿开采现状可以发现煤矿开采过程中,在生产、监管、巡检、安全、效率等方面还存在许多有…

图文详解Linux基础经典教程(08)——CentOS安装MySQL数据库

版权声明 本文原创作者:谷哥的小弟作者博客地址:http://blog.csdn.net/lfdfhl 概述 之前,我们在CentOS中安装了JDK、Tomcat;接下来,我们在CentOS中采用YUM的方式安装MySQL5.6数据库。 安装前准备工作 在此&#xf…

面试常用算法归纳

最长子串、子序列 先说明下子串和子序列的问题:对于s “pwwkew"来说,其中一个子串为"wke”,而"pwke" 是一个子序列。 子序列:一个字符串的 子序列 是指这样一个新的字符串:它是由原字符串在不改…

基于Matlab通用视频处理系统的设计-含Matlab代码

⭕⭕ 目 录 ⭕⭕⏩ 一、引言⏩ 二、系统总体方案设计⏩ 2.1 方案设计⏩ 2.2 界面设计⏩ 三、实例分析⏩ 四、参考文献⏩ 五、Matlab程序获取⏩ 一、引言 随着信息技术的发展,基于视频图像中对感兴趣的目标提取,已经逐渐渗透到人们生活的方方面面&#x…

[附源码]SSM计算机毕业设计“拥抱爱心”公益网站管理系统JAVA

项目运行 环境配置: Jdk1.8 Tomcat7.0 Mysql HBuilderX(Webstorm也行) Eclispe(IntelliJ IDEA,Eclispe,MyEclispe,Sts都支持)。 项目技术: SSM mybatis Maven Vue 等等组成,B/S模式 M…

VMware Workstation 与 Device/Credential Guard 不兼容问题

系列文章目录 VMware Workstation 与 Device/Credential Guard 不兼容问题 VMware Workstation 与 Device/Credential Guard 不兼容问题系列文章目录一、原因二、解决办法2.1修改虚拟化安全设备为禁用2.2HV主机服务启动类型设置 为 “禁用”2.3关闭 Hyper-V 并且打开虚拟机平台…

CUDA By Example(六)——纹理内存

在本章中,我们将学习如何分配和使用纹理内存(Texture Memory)。和常量内存一样,纹理内存是另一种类型的只读内存,在特定的访问模式中,纹理内存同样能够提升性能并减少内存流量。虽然纹理内存最初是针对传统的图形处理应用程序而设…

Linux学习-43-挂载Linux系统外的文件mount和卸载文件系统umount命令用法

10.10 mount命令详解:挂载Linux系统外的文件 所有的硬件设备必须挂载之后才能使用(新硬盘先格式化后创建分区,再对分区进行挂载),只不过,有些硬件设备(比如硬盘分区)在每次系统启动…

记录一次我虚拟机好不容易连上后的配置

有一说一,看到这个响应,人都麻了 在此我记录一下我检查了哪些,做了哪些 一、Windows本地服务 这一块,有一个算一个,没起的启动,启动的重启 二、VMware的虚拟网络编辑器设置 因为我这次成功用的是NAT模式&a…

图像分割 - 阈值处理 - 多阈值处理(OTSU)

目录 1. 多阈值处理介绍 2. 代码讲解 3. 完整代码 1. 多阈值处理介绍 之前介绍的都是全局单个阈值对图像的分割。固定阈值法,阈值是人工根据灰度直方图的波谷进行设置的。全局阈值法,根据不停的迭代两个区域间的平均灰度进行分割。OUST最大类间方差法…

centos7 环境安装 PM2 管理 node

前言: 由于最新的项目中用到的框架是 ssr 框架。 Vue使用的ssr是 nuxt.js,由于 nuxt.js 和普通的Vue项目不同,所以部署到Linux服务器的方式和普通的Vue项目是有区别的。 1、PM2 介绍 PM2 是一款非常优秀的 Node 进程管理工具,它…

用于科学研究的TCO反式环辛烯:1312010-03-9,(4E)-TCO-CycP-O-PNB ester

(4E)-TCO-CycP-O-PNB ester物理数据: CAS:1312010-03-9| 中文名:(4E)-反式环辛烯-CycP-O-PNB ester, (4E)-反式环辛烯-CYCP-O-PNB-酯 | 英文名:(4E)-TCO-CycP-O-PNB ester 结构式: 英文别名: …

试用信号灯实现如图所示的进程同步关系

试用信号灯实现如图所示的进程同步关系 信号量的个数要等于具有直接前驱的进程个数 P2,P3,P4,P5这些进程有前驱,所以设S2S3S4S50 因为P1执行完,P2,P3,P4才能执行因为P1没有直接前驱,所以直接释放P2.P3.P4的信号量S2,S3,S4P1{V(S2)V(S3)V(…

03-HTML

1 HTML入门 1.1 初识HTML 1.1.1 概述 网络世界已经跟我们息息相关,当我们打开一个网站,首先映入眼帘的就是一个个华丽多彩的网页。这些网页,不仅呈现着基本的内容,还具备优雅的布局和丰富的动态效果,这一切都是如何…

图像分割简介

相比于目标检测只是将目标位置检测出来而言,目标分割能够更精准的将图像进行划分。图像分割在计算机视觉中的地位 为后续检测、识别等提供技术支持。 图像分割难点以及处理 难点:图像特征的组合难以表达? 比如 图中人的头发和裤子是黑色&a…

《FFmpeg Basics》中文版-10-为视频添加文字

正文 视频中包含的文本数据可以显着提高其信息质量。 在视频中添加文字的相关介绍 如何将一些文本添加到视频输出中的两种常用方法是使用前一章中的字幕或叠加技术(overlay)。 具有许多可能性的最高级选项是使用表中描述的抽象滤镜: 描述从文本文件或字符串在视频…