一台服务器​最大并发 tcp 连接数多少?65535?

news2025/2/5 4:59:48

首先,问题中描述的65535个连接指的是客户端连接数的限制。

在tcp应用中,server事先在某个固定端口监听,client主动发起连接,经过三次握手后建立tcp连接。那么对单机,其最大并发tcp连接数是多少呢?

如何标识一个TCP连接

在确定最大连接数之前,先来看看系统如何标识一个tcp连接。系统用一个4四元组来唯一标识一个TCP连接:{localip, localport,remoteip,remoteport} = {本地ip,本地port,远程ip,远程port}

client最大tcp连接数

client每次发起tcp连接请求时,除非绑定端口,通常会让系统选取一个空闲的本地端口(local port),该端口是独占的,不能和其他tcp连接共享。tcp端口的数据类型是unsigned short,因此本地端口个数最大只有65536,端口0有特殊含义,不能使用,这样可用端口最多只有65535,所以在全部作为client端的情况下,一个client最大tcp连接数为65535,这些连接可以连到不同的serverip。

server最大tcp连接数

server通常固定在某个本地端口上监听,等待client的连接请求。不考虑地址重用(unix的SO_REUSEADDR选项)的情况下,即使server端有多个ip,本地监听端口也是独占的,因此server端tcp连接4元组中只有remoteip(也就是clientip)和remote port(客户端port)是可变的,因此最大tcp连接为客户端ip数×客户端port数,对IPV4,不考虑ip地址分类等因素,最大tcp连接数约为2的32次方(ip数)×2的16次方(port数),也就是server端单机最大tcp连接数约为2的48次方。

实际的tcp连接数

上面给出的是理论上的单机最大连接数,在实际环境中,受到机器资源、操作系统等的限制,特别是sever端,其最大并发tcp连接数远不能达到理论上限。在unix/linux下限制连接数的主要因素是内存和允许的文件描述符个数(每个tcp连接都要占用一定内存,每个socket就是一个文件描述符),另外1024以下的端口通常为保留端口。

所以,对server端,通过增加内存、修改最大文件描述符个数等参数,单机最大并发TCP连接数超过10万,甚至上百万是没问题的。

这明显是进入了思维的误区,65535是指可用的端口总数,并不代表服务器同时只能接受65535个并发连接。

举个例子:

我们做了一个网站,绑定的是TCP的80端口,结果是所有访问这个网站的用户都是通过服务器的80端口访问,而不是其他端口。可见端口是可以复用的。

即使Linux服务器只在80端口侦听服务, 也允许有10万、100万个用户连接服务器。Linux系统不会限制连接数至于服务器能不能承受住这么多的连接,取决于服务器的硬件配置、软件架构及优化。

01
我们知道两个进程如果需要进行通讯最基本的一个前提是:能够唯一的标示一个进程。在本地进程通讯中我们可以使用PID来唯一标示一个进程,但PID只在本地唯一,网络中的两个进程PID冲突几率很大。

这时候就需要另辟它径了,IP地址可以唯一标示主机,而TCP层协议和端口号可以唯一标示主机的一个进程,这样可以利用IP地址+协议+端口号唯一标示网络中的一个进程。

能够唯一标示网络中的进程后,它们就可以利用socket进行通信了。socket(套接字)是在应用层和传输层之间的一个抽象层,它把TCP/IP层复杂的操作抽象为几个简单的接口供应用层调用以实现进程在网络中通信。

socket源自Unix,是一种"打开—读/写—关闭"模式的实现,服务器和客户端各自维护一个"文件",在建立连接打开后,可以向自己文件写入内容供对方读取或者读取对方内容,通讯结束时关闭文件。

02
唯一能够确定一个连接有4个东西:

  • 服务器的IP
  • 服务器的Port
  • 客户端的IP
  • 客户端的Port

服务器的IP和Port可以保持不变,只要客户端的IP和Port彼此不同就可以确定一个连接数。

一个socket是可以建立多个连接的,一个TCP连接的标记为一个四元组(source_ip, source_port, destination_ip, destination_port),即(源IP,源端口,目的IP,目的端口)四个元素的组合。只要四个元素的组合中有一个元素不一样,那就可以区别不同的连接。

举个例子:

你的主机IP地址是1.1.1.1, 在8080端口监听
当一个来自 2.2.2.2 发来一条连接请求,端口为5555。这条连接的四元组为(1.1.1.1, 8080, 2.2.2.2, 5555)
这时2.2.2.2又发来第二条连接请求,端口为6666。新连接的四元组为(1.1.1.1, 8080, 2.2.2.2, 6666)

那么,你主机的8080端口建立了两条连接;

(2.2.2.2)发来的第三条连接请求,端口为5555(或6666)。第三条连接的请求就无法建立,因为没有办法区分于上面两条连接。

同理,可以在同一个端口号和IP地址上绑定一个TCP socket和一个UDP socket
因为端口号虽然一样,但由于协议不一样,所以端口是完全独立的。
TCP/UDP一般采用五元组来定位一个连接:
source_ip, source_port, destination_ip, destination_port, protocol_type
即(源IP,源端口,目的IP,目的端口,协议号)

综上所述,服务器的并发数并不是由TCP的65535个端口决定的。服务器同时能够承受的并发数是由带宽、硬件、程序设计等多方面因素决定的。

所以也就能理解淘宝、腾讯、头条、百度、新浪、哔哔哔哔等为什么能够承受住每秒种几亿次的并发访问,是因为他们采用的是服务器集群。服务器集群分布在全国各地的大型机房,当访问量小的时候会关闭一些服务器,当访问量大的时候回不断的开启新的服务器。

65535从哪来的,干啥的?

要解释好这个问题,就要先说清楚65535的含义。在Linux系统中,如果两个机器要通信,那么相互之间需要建立TCP连接,为了让双方互相认识,Linux系统用一个四元组来唯一标识一个TCP连接:{local ip, local port, remote ip, remote port},即本机IP、本机端口、远程IP、远程端口,IP和端口就相当于小区地址和门牌号,只有拿到这些信息,通信的双方才能互相认知。在Linux系统中,表示端口号(port)的变量占16位,这就决定了端口号最多有2的16次方个,即65536个,另外端口0有特殊含义不给使用,这样每个服务器最多就有65535个端口可用。因此,65535代表Linux系统支持的TCP端口号数量,在TCP建立连接时会使用。

TCP怎么建立连接,与端口号是什么关系?

Linux服务器在交互时,一般有两种身份:客户端或者服务器端。典型的交互场景是:
(1)服务器端主动创建监听的socket,并绑定对外服务端口port,然后开始监听
(2)客户端想跟服务器端通信时,就开始连接服务器的端口port
(3)服务端接受客户端的请求,然后再生成新的socket
(4)服务器和客户端在新的socket里进行通信

可以看到,端口port主要用在服务器和客户端的“握手认识”过程,一旦互相认识了,就会生成新的socket进行通信,这时候port就不再需要了,可以给别的socket通信去使用,所以很明显TCP连接的数量可以大于TCP端口号的数量65,535。

考虑一下两个极端场景,即某台Linux服务器只作为客户端或者服务器端
(1)Linux服务器只作为客户端

这时候每发起一个TCP请求,系统就会指定一个空闲的本地端口给你用,而且是独占式的,不会被别的TCP连接抢走,这样最多可以建立65535个连接,每个连接都与不同的服务器进行交互。这种场景,就是题主所描述的样子,但是由于条件过于苛刻,属于小概率事件,所以更多的还是理论上的可能,现实的环境中几乎不会出现。

(2)Linux服务器只作为服务端

这种场景下,服务端就会固定的监听本地端口port,等着客户端来向它发起请求。为了计算简单,我们假设服务器端的IP跟端口是多对一的,这样TCP四元组里面就有remote ip和remote port是可变的,因此最大支持创建TCP个数为2的32次方(IP地址是32位的)乘以2的16次方(port是16位的)等于2的48次方。

现实中单台Linux服务器支持的TCP连接数量

通过前面的分析我们知道,在现实场景中,由于存在端口port复用的情况,服务器可同时支持的TCP连接数跟65535没有一一对应关系,事实上,真正影响TCP连接数量的,是服务器的内存以及允许单一进程同时打开文件的数量,因为每创建一个TCP连接都要创建一个socket句柄,每个socket句柄都占用一部分系统内存,当系统内存被占用殆尽,允许的TCP并发连接数也就到了上限。一般来讲,通过增加服务器内存、修改最大文件描述符个数等,可以做到单台服务器支持10万+的TCP并发。

当然,在真实的商用场景下,单台服务器都会编入分布式集群,通过负载均衡算法动态的调度不同用户的请求给最空闲的服务器,如果服务器平均内存使用超过80%的警戒线,那么就会及时采用限流或者扩展集群的方式来保证服务,绝对不会出现服务器的内存被耗尽的情况,那样就算事故了。

总之,65535只是Linux系统中可使用端口port数量的上限,端口port数量与TCP连接数量并非完全一一对应的关系,服务器支持的TCP并发连接数量主要跟服务器的内存以及允许单个进程同时打开的文件数量有关系,通过端口复用及调整服务器参数等手段,单台服务器支持的TCP并发连接数是可以高于65535的。

来源:blog.csdn.net/daocaokafei/article/details/115410761

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1337153.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

将elementUI,NaiveUI的progress环形进度条设置为渐变色

需求 :进度条要有一个渐变效果。效果图: NaiveUI和elementUI的官方progress组件都是只能设置一种颜色,不符合需求所以改一下。 其实NaiveUI和elementUI设置进度条的实现方式基本一样都是使用svg渲染出两个path,第一个是底色&…

教你一分钟弄清屏幕SPI接口名称

相关文章 快速入门ESP32——开发环境配置Arduino IDE 快速入门ESP32——开发环境配置PlatformIO IDE 快速入门ESP32—— platformIO添加开源库和自己的开发库 一分钟弄清屏幕SPI接口名称 前言一、屏幕SPI接口名称二、与单片机连接总结 前言 最近,我在捣鼓CD屏幕的SP…

服务器系统时间不同步如何处理

在分布式计算环境中,服务器系统时间的同步至关重要。然而,由于各种原因,服务器系统时间不同步的问题时有发生,这可能会导致严重的问题,如日志不准确、证书验证失败等。下面我们可以一起探讨下造成服务器系统时间不同的原因以及解决…

理解io/nio/netty

一、io io即input/output,输入和输出 1.1 分类 输入流、输出流(按数据流向) 字节流(InputStream/OutputStream(细分File/Buffered))、字符流(Reader/Writer(细分File/Buffered/pu…

iClient for JavaScript如何以mvt矢量瓦片的形式加载数据服务

刘大 这里写目录标题 前言1.iServer中的预览页面2.iClient for JavaScript加载2.1 构建Style2.2 iCient加载2.2.1Leaflet & MapboxGL2.2.2 OpenLayers 前言 在提到查看iServer REST数据服务的概况的时候,大家总会想到说,通过发布对应的地图服务或者…

一文读懂SoBit 跨链桥教程

从BTC网络到Solana网络桥接BRC20 1.打开SoBit平台:在您的网络浏览器中启动SoBit Bridge应用程序。 2.连接您的钱包: 选择SoBit界面右上角的比特币网络来连接您的数字钱包。 3.选择源链、目标链和您想桥接的代币: 从下拉菜单中选择’BTC’作为…

JVM入门到入土-Java虚拟机寄存器指令集与栈指令集

JVM入门到入土-Java虚拟机寄存器指令集与栈指令集 HotSpot虚拟机中的任何操作都需要入栈和出栈的步骤。 由于跨平台性的设计,Java的指令都是根据栈来设计的。不同平台CPU架构不同,所以不能设计为基于寄存器的。优点是跨平台,指令集小&#x…

k8s---kubernets

目录 一、Kurbernetes 1.2、K8S的特性: 1.3、docker和K8S: 1.4、K8S的作用: 1.5、K8S的特性: 二、K8S集群架构与组件: 三、K8S的核心组件: 一、master组件: 1、kube-apiserver&#xff1…

【Spring实战】07 JPA

文章目录 1. 定义2. 出现原因3. 添加依赖4. 使用1)创建 Repository 接口2)自定义查询方法(非必须)3)创建实体类4)调用方法 5. 验证6. 优点7. 缺点8. 详细代码总结 1. 定义 Spring Data JPA 是 Spring 提供…

C# 编写简单二维码条形码工具

C# 二维码条形码工具 该工具简单实现了二维码条形码生成与识别功能,识别方式:通过摄像头实时识别或通过图片文件识别。 using AForge.Genetic; using AForge.Video.DirectShow; using System; using System.Collections.Generic; using System.Component…

实习知识整理6:前后端利用jQuery $.ajax数据传输的四种方式

方式1&#xff1a;前端发送key/value(String字符串)&#xff0c;后台返回文本 前端&#xff1a; <input id"test1" type"button" value"前端发送key/value(String字符串)&#xff0c;后台返回文本"/> $(function() {$("#test1&quo…

YHZ001 Python 简介

配套视频链接: YHZ001 Python 简介 目录 &#x1f649; Python的历史&#x1fab1; Python的作者&#x1f98a; Python 的优缺点&#x1f417; Python 的应用领域&#x1f41e; Python 哲学&#x1f430; Python 解释器 &#x1f649; Python的历史 1989年圣诞节&#xff1a; …

数据智慧:C#中编程实现自定义计算的Excel数据透视表

前言 数据透视表&#xff08;Pivot Table&#xff09;是一种数据分析工具&#xff0c;通常用于对大量数据进行汇总、分析和展示。它可以帮助用户从原始数据中提取关键信息、发现模式和趋势&#xff0c;并以可视化的方式呈现。 在数据透视表中&#xff0c;数据分析师通常希望进…

Redis Streams在Spring Boot中的应用:构建可靠的消息队列解决方案【redis实战 二】

欢迎来到我的博客&#xff0c;代码的世界里&#xff0c;每一行都是一个故事 Redis Streams在Spring Boot中的应用&#xff1a;构建可靠的消息队列解决方案 引言前言Redis Streams的基本概念和特性1. 日志数据结构2. 消息和字段3. 消费者组4. 消息ID5. 实时和历史数据处理6. 性能…

1.决策树

目录 1. 什么是决策树? 2. 决策树的原理 2.1 如何构建决策树&#xff1f; 2.2 构建决策树的数据算法 2.2.1 信息熵 2.2.2 ID3算法 2.2.2.1 信息的定义 2.2.2.2 信息增益 2.2.2.3 ID3算法举例 2.2.2.4 ID3算法优缺点 2.2.3 C4.5算法 2.2.3.1 C4.5算法举例 2.2.4 CART算法 2.2.4…

智能优化算法应用:基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用&#xff1a;基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用&#xff1a;基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.孔雀算法4.实验参数设定5.算法结果6.参考文献7.MA…

机械革命极光Pro重装Win10系统图解

机械革命极光Pro是性能优秀的笔记本电脑&#xff0c;深受广大用户的喜欢&#xff0c;现在用户想给笔记本电脑重新安装一下操作系统&#xff0c;但不知道重装系统的详细步骤。下面小编将带来机械革命极光Pro笔记本电脑重装系统Win10版本的步骤介绍&#xff0c;帮助更多的用户完成…

Python 基础面试第三弹

1. 获取当前目录下所有文件名 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 import os def get_all_files(directory): file_list []<br> # <code>os.walk</code>返回一个生成器&#xff0c;每次迭代时返回当前目录路径、子目录列表和文件列表 for…

【Kafka】Kafka客户端认证失败:Cluster authorization failed.

背景 kafka客户端是公司内部基于spring-kafka封装的spring-boot版本&#xff1a;3.xspring-kafka版本&#xff1a;2.1.11.RELEASE集群认证方式&#xff1a;SASL_PLAINTEXT/SCRAM-SHA-512经过多年的经验&#xff0c;以及实际验证&#xff0c;配置是没问题的&#xff0c;但是业务…

数据结构:图文详解 树与二叉树(树与二叉树的概念和性质,存储,遍历)

目录 一.树的概念 二.树中重要的概念 三.二叉树的概念 满二叉树 完全二叉树 四.二叉树的性质 五.二叉树的存储 六.二叉树的遍历 前序遍历 中序遍历 后序遍历 一.树的概念 树是一种非线性数据结构&#xff0c;它由节点和边组成。树的每个节点可以有零个或多个子节点…