智能优化算法应用:基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码

news2025/2/5 5:54:30

智能优化算法应用:基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于孔雀算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.孔雀算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用孔雀算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.孔雀算法

孔雀算法原理请参考:https://blog.csdn.net/u011835903/article/details/127779440
孔雀算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


孔雀算法参数如下:

%% 设定孔雀优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明孔雀算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1337128.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

机械革命极光Pro重装Win10系统图解

机械革命极光Pro是性能优秀的笔记本电脑,深受广大用户的喜欢,现在用户想给笔记本电脑重新安装一下操作系统,但不知道重装系统的详细步骤。下面小编将带来机械革命极光Pro笔记本电脑重装系统Win10版本的步骤介绍,帮助更多的用户完成…

Python 基础面试第三弹

1. 获取当前目录下所有文件名 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 import os def get_all_files(directory): file_list []<br> # <code>os.walk</code>返回一个生成器&#xff0c;每次迭代时返回当前目录路径、子目录列表和文件列表 for…

【Kafka】Kafka客户端认证失败:Cluster authorization failed.

背景 kafka客户端是公司内部基于spring-kafka封装的spring-boot版本&#xff1a;3.xspring-kafka版本&#xff1a;2.1.11.RELEASE集群认证方式&#xff1a;SASL_PLAINTEXT/SCRAM-SHA-512经过多年的经验&#xff0c;以及实际验证&#xff0c;配置是没问题的&#xff0c;但是业务…

数据结构:图文详解 树与二叉树(树与二叉树的概念和性质,存储,遍历)

目录 一.树的概念 二.树中重要的概念 三.二叉树的概念 满二叉树 完全二叉树 四.二叉树的性质 五.二叉树的存储 六.二叉树的遍历 前序遍历 中序遍历 后序遍历 一.树的概念 树是一种非线性数据结构&#xff0c;它由节点和边组成。树的每个节点可以有零个或多个子节点…

113基于matlab的PSO-SVM多输入单输出预测程序

基于matlab的PSO-SVM多输入单输出预测程序。PSO对SVM的两个参数进行优化得到最佳参数值进行预测。并输出预测误差等相应结果。程序已调通&#xff0c;可直接运行。 113matlabPSO-SVM多输入单输出 (xiaohongshu.com)

普中STM32-PZ6806L开发板(STM32CubeMX创建项目并点亮LED灯)

简介 搭建一个用于驱动 STM32F103ZET6 GPIO点亮LED灯的任务;电路原理图 LED电路原理图 芯片引脚连接LED驱动引脚原理图 创建一个点亮LED灯的Keil 5项目 创建STM32CubeMX项目 New Project -> 单击 -> 芯片搜索STM32F103ZET6->双击创建 初始化时钟 初始化LED G…

基于双闭环PI的SMO无速度控制系统simulink建模与仿真

目录 1.课题概述 2.系统仿真结果 3.核心程序与模型 4.系统原理简介 5.完整工程文件 1.课题概述 基于双闭环PI的SMO无速度控制系统simulink建模与仿真&#xff0c;基于双闭环PI的SMO无速度控制系统主要由两个闭环组成&#xff1a;一个是电流环&#xff0c;另一个是速度环。…

Flink CDC 1.0至3.0回忆录

Flink CDC 1.0至3.0回忆录 一、引言二、CDC概述三、Flink CDC 1.0&#xff1a;扬帆起航3.1 架构设计3.2 版本痛点 四、Flink CDC 2.0&#xff1a;成长突破4.1 DBlog 无锁算法4.2 FLIP-27 架构实现4.3 整体流程 五、Flink CDC 3.0&#xff1a;应运而生六、Flink CDC 的影响和价值…

数据库原理及应用·数据库保护

7.1 事务 7.1.1 事务定义 1.事务是用户定义的一个数据操作序列&#xff0c;这些操作要么全部执行、要么全部不执行&#xff0c;是一个不可分割的工作单元。 事务是恢复和并发控制的基本单位 事务的两种方式&#xff1a; 7.1.2 事务处理模型 1.ISO事务处理模型&#xff1a…

隐私第一:在几分钟内部署本地大语言模型!

彻底改变您的数据安全游戏&#xff1a;快速无缝部署本地大语言模型&#xff0c;实现无与伦比的隐私! 2023年是人工智能领域加速发展的一年。除了健壮的商业上可用的大型语言模型之外&#xff0c;还出现了许多值得称赞的开源方案&#xff0c;例如Llama2、Codellama、Mistral和Vi…

鸿蒙开发中的坑(持续更新……)

最近在使用鸿蒙开发时&#xff0c;碰到了一些坑&#xff0c;特做记录&#xff0c;如&#xff1a;鸿蒙的preview不能预览&#xff0c;轮播图组件Swiper使用时的问题&#xff0c;console.log() 打印的内容 一、鸿蒙的preview不能预览 首先&#xff0c;只有 ets文件才能预览。 其…

HarmonyOS应用抓包实战

Charles抓包原理 Charles是一个HTTP代理服务器,HTTP监视器,反转代理服务器&#xff0c;当浏览器连接Charles的代理访问互联网时&#xff0c;Charles可以监控浏览器发送和接收的所有数据。 在开发OpenHarmony/HarmonyOS应用开发时&#xff0c;我们使用的是ohos/axios来进行网络…

2023.12.25 关于 Redis 数据类型 Hash 常用命令、内部编码、应用场景

目录 Hash 数据类型 Hash 操作命令 HSET HGET HEXISTS HDEL HKEYS HVALS HGETALL HMGET HLEN HSETNX HINCRBY HINCRBYFLOAT HSTRLEN Hash 编码方式 理解什么是压缩 Hash 实际应用 Cache 缓存 Hash 数据类型 整体上来说 Redis 是键值对结构&#xff0c;其中 …

基于JSP+Servlet+Mysql的学生宿舍管理系统(简单的增删改查)

基于JSPServletMysql的学生宿舍管理系统 一、系统介绍二、功能展示1.登陆、注册2.主页3.增加3.修改4.删除 四、其它1.其他系统实现五.获取源码 一、系统介绍 项目名称&#xff1a;基于JSPServletMysql的学生宿舍管理系统(简单的增删改查) 项目架构&#xff1a;B/S架构 开发语…

电视盒子什么品牌好?经销商分享线下热销电视盒子排行榜

做实体数码店已经超过六年了&#xff0c;我对电视盒子这行是非常了解的&#xff0c;品牌的优势和特色都有研究&#xff0c;超级多网友在讨论电视盒子什么品牌好&#xff0c;我整理了店铺内销量最高的电视盒子排行榜&#xff0c;想知道目前哪些电视盒子最受消费者欢迎&#xff0…

真实案例扫描APP开发——基于实例分割实现拍照文档实时边缘检测(C++/JNI实现)

前言 这是一个安卓NDK的项目&#xff0c;想要实现的效果就是拍照扫描&#xff0c;这里只涉及到的只有边缘检测&#xff0c;之后会写文档滤镜、证件识别与证件1比1打印&#xff0c;OCR、版面分析之后的文档还原。我的开发环境是Android Studio 北极狐&#xff0c;真机是华为mat…

详解Keras3.0 Layer API: LSTM layer

LSTM layer 用于实现长短时记忆网络&#xff0c;它的主要作用是对序列数据进行建模和预测。 遗忘门&#xff08;Forget Gate&#xff09;&#xff1a;根据当前输入和上一个时间步的隐藏状态&#xff0c;计算遗忘门的值。遗忘门的作用是控制哪些信息应该被遗忘&#xff0c;哪些…

最新版手机无人直播硬改虚拟摄像头,支持多平台修改手机摄像头【硬改神器+使用教程】

最新版手机无人直播助手App安卓版介绍&#xff1a; 顺哥轻创V:shundazy1 这是一款兼容性强大的手机无人直播工具&#xff0c;是无人直播神器&#xff0c;不依赖电脑&#xff0c;手机无需root权限&#xff0c;不需要装xp框架&#xff0c;支持主流平台兼容性极佳&#xff0c;1V…

BEECMS靶场 -->漏洞挖掘

这几天&#xff0c;一天一个靶场&#xff08;累鼠我啦&#xff09;&#xff0c;哈哈哈&#xff0c;也算是积累了不少经验&#xff0c;今天&#xff0c;我们就来讲一下BEECMS靶场吧&#xff01;&#xff01;&#xff01; 先是直接进入到他的界面…

MySQL——进阶篇

二、进阶篇&#x1f6a9; 1. 存储引擎&#x1f346; 1.1 MSQL体系结构 连接层&#xff1a; 连接处理&#xff0c;连接认证&#xff0c;每个客户端的权限 服务层&#xff1a; 绝大部分核心功能&#xff0c;可跨存储引擎 可插拔存储引擎&#xff1a; 需要的时候可以添加或拔掉…