智能优化算法应用:基于白鲸算法3D无线传感器网络(WSN)覆盖优化 - 附代码

news2024/11/24 8:47:36

智能优化算法应用:基于白鲸算法3D无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于白鲸算法3D无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.白鲸算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用白鲸算法进行3D无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n , z n ) (x_n,y_n,z_n) (xn,yn,zn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p , z p ) p(x_p,y_p,z_p) p(xp,yp,zp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 ,   d ( n , p ) ≤ R n 0 ,   e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 + ( z n − z p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2 + (z_n-z_p)^2} d(n,p)=(xnxp)2+(ynyp)2+(znzp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , z i , r } node_i=\{x_i,y_i,z_i,r\} nodei={xi,yi,zi,r},表示以节点 ( x i , y i , z i ) (x_i,y_i,z_i) (xi,yi,zi)为圆心,r为监测半径的球,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n ∗ l m*n*l mnl个空间点,空间点的坐标为 ( x , y , z ) (x,y,z) (x,y,z),目标点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 + ( z i − z ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2 + (z_i-z)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2+(ziz)2 (3)
目标区域内点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为点 ( x , y , z ) (x,y,z) (x,y,z)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , z , n o d e i ) = { 1 , i f   d ( n o d e i , p ) ≤ r 0 ,   e s l e (4) P_{cov}(x,y,z,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,z,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n ∗ l (5) CoverRatio = \frac{\sum P_{cov}}{m*n*l}\tag{5} CoverRatio=mnlPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.白鲸算法

白鲸算法原理请参考:https://blog.csdn.net/u011835903/article/details/127642354
白鲸算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ∗ l ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n*l}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnlPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY*AreaZ
AreaX = 100;
AreaY = 100;
AreaZ = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径


白鲸算法参数如下:

%% 设定白鲸优化参数
pop=30; % 种群数量
Max_iteration=30; %设定最大迭代次数
lb = ones(1,3*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N),AreaZ.*ones(1,N)];
dim = 3*N;%维度为3N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升。表明白鲸算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1333191.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

vue3 新项目 - 搭建路由router

创建router/index 文件 main.ts 安装 router 然后 在 app下面 去 设置 路由出口

P6 音频格式—— AAC

目录 前言 01 AAC是什么? 02 为什么需要进行AAC进行音频压缩处理? 03 AAC的特点以及优势 04 AAC格式详解: 4.1. ADIF的数据结构: 4.1.1 ADIF Header具体的表格: 4.2. ADTS的结构(重点): …

项目管理4321方法论

文章目录 一、项目立项准备(4步)case1、识别价值---解决背后痛点的才是价值,价值是做任何事情的出发点case2、明确目标---支撑价值实现的,目标是 具体/可衡量/可达到/相关性/有时限的case3、识别干系人---找对人才能做对事&#x…

MYSQL函数\约束\多表查询\事务

函数 字符串函数 数值函数 mod就是取余 日期函数 流程函数 约束 外键约束 删除更新\外键 多表查询 多表关系 一对多 多对多 一对一 多表查询 内连接 select e.name d.name from emp e join dept d on e.id d.id; 外连接 select emp.*, d.name from emp left join tm…

堆与二叉树(下)

接着上次的,这里主要介绍的是堆排序,二叉树的遍历,以及之前讲题时答应过的简单二叉树问题求解 堆排序 给一组数据,升序(降序)排列 思路 思考:如果排列升序,我们应该建什么堆&#x…

【贪心】买卖股票的最佳时机含手续费

/** 贪心:每次选取更低的价格买入,遇到高于买入的价格就出售(此时不一定是最大收益)。* 使用buy表示买入股票的价格和手续费的和。遍历数组,如果后面的股票价格加上手续费* 小于buy,说明有更低的买入价格更新buy。如…

面向船舶结构健康监测的数据采集与处理系统(一)系统架构

世界贸易快速发展起始于航海时代,而船舶作为重要的水上交通工具,有 其装载量大,运费低廉等优势。但船舶在运营过程中出现的某些结构处应力值 过大问题往往会给运营部门造成重大的损失,甚至造成大量的人员伤亡和严重 的环境污染…

Fastjson 常用语法

一.Json数据格式回顾 1.1 什么是json JSON:(JavaScript Object Notation, JS 对象简谱) 是一种轻量级的数据交换格式。它基于 ECMAScript(欧洲计算机协会制定的js规范)的一个子集,采用完全独立于编程语言的文本格式来存储和表示数据。简洁和清晰的层次结构使得 JSO…

现代控制理论-李雅普诺夫

现代控制理论-李雅普诺夫 单输入单输出系统(BIBO)的系统函数如下: 则,该系统的能控标准型(能空性)为: 能观性: 李雅普诺夫下的稳定性: 李雅普诺夫下的渐进稳定性&a…

AIGC:大语言模型LLM的幻觉问题

引言 在使用ChatGPT或者其他大模型时,我们经常会遇到模型答非所问、知识错误、甚至自相矛盾的问题。 虽然大语言模型(LLMs)在各种下游任务中展示出了卓越的能力,在多个领域有广泛应用,但存在着幻觉的问题&#xff1a…

Unity动画系统学习笔记(二)根运动、动画事件与状态机行为

一、根运动 在学习根运动前需要了解两个名词: 身体变换:身体变换是角色的质心。它用于 Mecanim 的重定向引擎,并提供最稳定的移位模型。身体方向是相对于 Avatar T 形姿势的下身和上身方向的平均值。身体变换和方向存储在动画剪辑中&#x…

使用VisualStutio2022开发第一个C++程序

使用VisualStudio2022创建C项目 第一步:新建C的控制台应用 第二步:填写项目名称和代码存放位置,代码的存放目录不要有中文名 第三步:点击创建,VisualStudio会自动开始帮我们创建项目 第四步:项目创建好以后&…

【PostGIS】PostgreSQL15+对应PostGIS安装教程及空间数据可视化

一、PostgreSQL15与对应PostGIS安装 PostgreSQL15安装:下载地址PostGIS安装:下载地址(选择倒数第二个) 1、PostgreSQL安装 下载安装包;开始安装,这里使用默认安装,一直next直到安装完成&…

接口测试的持续集成的工具(git代码管理工具,jenkins持续集成)

持续集成的概念:大白话就是持续的做一件事情,使其使用起来更加流畅;结合测试来讲就是说用工具管理好代码的同时,使代码运行的更加自动以及智能;提升测试效率。 ⽹址:https://git-scm.com/downloads 长这个…

SpringSecurity6 | 失败后的跳转

✅作者简介:大家好,我是Leo,热爱Java后端开发者,一个想要与大家共同进步的男人😉😉 🍎个人主页:Leo的博客 💞当前专栏: Java从入门到精通 ✨特色专栏: MySQL学习 🥭本文内容: SpringSecurity6 | 失败后的跳转 📚个人知识库: Leo知识库,欢迎大家访问 学习…

【网络安全/CTF】unseping 江苏工匠杯

该题考察序列化反序列化及Linux命令执行相关知识。 题目 <?php highlight_file(__FILE__);class ease{private $method;private $args;function __construct($method, $args) {$this->method $method;$this->args $args;}function __destruct(){if (in_array($thi…

TypeScript学习笔记归纳(持续更新ing)

文章目录 前言 二、TypeScript的优势体现在哪里&#xff1f; 1、执行时间上的区别 2、基础数据类型区别 3、TS优势 三、TypeScript的关键特性 四、TypeScript的类型系统 1、什么是类型注释&#xff1f; 2、类型系统核心 - 常用类型 1&#xff09; 基本类型&#xff0…

vue 自定义的通用的表格组件(使用div)

vue 自定义的通用的表格组件(使用div) 做项目的时候由于传统的table及elementUI的el-table的tr和td没办法设置间距,满足不了UI提供的设计稿,为了还原,自己封装了该组件 该表格组件的特点 表头排序功能:支持点击表头进行升序、降序排序,并显示相应的排序图标。复选框功能…

【unity】关于unity3D摄像机视角移动的几种方式详解

目录 一、前言 二、Transform基础 1、几种坐标系 2、position和localPosition属性 3、rotation属性 三、摄像机的平移 1、键盘控制平移 2、鼠标控制平移 3、整合 四、摄像机的旋转 1、绕自身旋转 2、绕目标物体旋转 3、整合 五、优化功能 1、调整速率 2、切换…