mysql使用全文索引+ngram全文解析器进行全文检索

news2025/1/13 2:38:12

表结构:表名  gamedb   主键  id   问题类型  type  问题  issue  答案 answer

需求

现在有个游戏资料库储存在mysql中,客户端进行搜索,需要对三个字段进行匹配,得到三个字段的相关性,选出三个字段中相关性最大的值进行排序,以此获取相关性最高的数据。如以上表,用户搜索的问题是 “如何获得更多游戏积分?”,然后我需要在(type,issue,answer)三个字段里面进行匹配,找到和这个问题相关性最高的数据。

思路

使用MySQL全文检索进行关键词搜索并按相关性得分排序的查询语句。本人mysql版本5.7.24

mysql全文检索,对mysql版本有什么要求?
  1. 从MySQL 5.6版本开始,InnoDB存储引擎开始支持全文索引。而在MySQL 5.7版本之后,通过使用ngram插件开始支持中文全文索引。在MySQL 5.7.6之前,全文索引只支持英文全文索引,不支持中文全文索引。
  2. 对于MySQL 5.6版本之前,只有MyISAM存储引擎支持全文索引,而从MySQL 5.6版本开始,InnoDB和MyISAM均支持全文索引。
  3. 需要注意的是,MySQL的全文索引对中文的支持存在一定限制,因此在实际应用中可能需要采用其它方案去替代。
ngram全文分析器
  • 什么是ngram?

ngram是全文解析器能够对文本进行分词,中文分词用 ngram_token_size 设定分词的大小,ngram_token_size 的值就是连续n个字的序列
示例:使用ngram对于全文索引进行分词

ngram_token_size =1,分词为 ‘全‘,’文‘,’索‘,’引‘
ngram_token_size =2,分词为 ‘全文‘,’文索‘,’索引‘
ngram_token_size =3,分词为 ‘全文索‘,’文索引‘
ngram_token_size =4,分词为 ‘全文索引‘

  • 如何查看配置ngram_token_size?
#查看默认分词大小 ngram_token_size=2
show variables like '%token%';

查询结果

        

innodb_ft_min_token_size
默认3,表示最小3个字符作为一个关键词,增大该值可减少全文索引的大小
innodb_ft_max_token_size
默认84,表示最大84个字符作为一个关键词,限制该值可减少全文索引的大小
ngram_token_size
默认2,表示2个字符作为内置分词解析器的一个关键词,如对“abcd”建立全文索引,关键词为’ab’,‘bc’,‘cd’
当使用ngram分词解析器时,innodb_ft_min_token_size和innodb_ft_max_token_size 无效

  • 怎么配置ngram?

1、ngram可以作为启动字符串的一部分或者在配置文件中设置
启动字符串:

mysqld --ngram_token_size=2

2、配置文件(my.ini):
以windos系统为例,首先找到my.ini文件(默认安装路径:C:\ProgramData\MySQL\MySQL Server 5.7\my.ini),编辑该文件,在文件后加上如下配置:

# 设置mysql客户端默认字符集
default-character-set=utf8
[mysqld]
#设置3306端口
port = 3306

server_id=100
# 设置mysql的安装目录
basedir=D:\mysql-5.7.24-winx64
# 设置mysql数据库的数据的存放目录
datadir=D:\mysql-5.7.24-winx64\data
# 允许最大连接数
max_connections=200
# 服务端使用的字符集默认为8比特编码的latin1字符集
character-set-server=utf8
# 创建新表时将使用的默认存储引擎
default-storage-engine=INNODB

# 全文检索分词数
ngram_token_size=2

配置完成后重启服务

  • 如何创建全文索引并且使用ngram

1、通过建表语句建立
 

CREATE TABLE `full_search_test` (
  `id` int unsigned NOT NULL AUTO_INCREMENT,
  `author` varchar(200) COLLATE utf8mb4_general_ci DEFAULT NULL,
  `title` varchar(200) COLLATE utf8mb4_general_ci DEFAULT NULL,
  `content` text COLLATE utf8mb4_general_ci,
  PRIMARY KEY (`id`),
  FULLTEXT KEY `full_index_title` (`title`) WITH PARSER `ngram`  
) ENGINE=InnoDB AUTO_INCREMENT=9 DEFAULT CHARSET=utf8mb4 COLLATE=utf8mb4_general_ci

2、通过 alter table 的方式来添加

ALTER TABLE full_search_test ADD FULLTEXT INDEX full_index_title(title) WITH PARSER ngram;

3、直接通过create index的方式

#为title创建全文索引并且使用ngram全文解析器进行分词
CREATE FULLTEXT INDEX full_index_title ON full_search_test(title) WITH PARSER `ngram`;

实际案例

  • 创建表 
CREATE TABLE gamedb (
    id INT AUTO_INCREMENT PRIMARY KEY,
    type VARCHAR(255),
    issue VARCHAR(255),
    answer VARCHAR(255)
);
  • typeissueanswer字段创建全文索引 
    CREATE FULLTEXT INDEX gamedb_index_type ON gamedb(type);
    CREATE FULLTEXT INDEX gamedb_index_issue ON gamedb(issue);
    CREATE FULLTEXT INDEX gamedb_index_answer ON gamedb(answer);
    

检测这三个字段 

SELECT *,
       (MATCH(type) AGAINST('我喜欢扩展包包')) AS score_type,
       (MATCH(issue) AGAINST('我喜欢扩展包包')) AS score_issue,
       (MATCH(answer) AGAINST('我喜欢扩展包包')) AS score_answer
FROM gamedb
WHERE MATCH(type) AGAINST('我喜欢扩展包包') OR
      MATCH(issue) AGAINST('我喜欢扩展包包') OR
      MATCH(answer) AGAINST('我喜欢扩展包包');

缺点

n-gram分词是一种基于统计的分词方法,它将文本按照n个连续的词为单位进行切分。虽然n-gram分词在很多应用中表现良好,但也存在一些缺点:

  1. 歧义处理困难: n-gram分词无法处理词汇歧义,因为它只考虑了相邻词汇之间的关系,而没有考虑上下文的语境。在一些语境下,同一个词可能有不同的含义,而n-gram分词无法准确捕捉这种语境。

  2. 未考虑词序信息: n-gram分词方法忽略了词汇之间的具体顺序信息,只考虑了相邻词的组合。然而,在自然语言中,词汇的排列顺序对于理解文本意义非常重要,而n-gram分词无法很好地捕捉这种词序信息。

  3. 数据稀疏性: 随着n的增大,n-gram模型需要更多的训练数据来准确地估计参数,但在实际应用中,获得大规模标注数据并不总是容易。这会导致模型对于较长的n-gram组合的泛化能力下降。

  4. 词汇变化问题: 对于一些具有词形变化、时态变化等特性的语言,n-gram分词可能面临词汇变化导致的困扰。例如,动词的不同时态形式可能被认为是不同的n-gram,导致模型难以正确处理这种变化。

  5. 无法处理未知词汇: n-gram模型无法处理未在训练数据中出现的词汇,因为它们在统计信息中没有相应的记录。对于生僻词、新词或专业名词等,n-gram分词可能表现较差。

  6. 效率问题:n-gram分词需要构建和维护大规模的n-gram模型,这可能导致内存消耗较大,并且在处理大量文本时可能会导致较慢的分词速度。

最后没有采纳这种方法,由于ngram分词不怎么灵活,不同的分词大小可能会在分词结果和性能方面有所差异。较小的n值(如2-gram)可能更适合处理短语和常见词语,而较大的n值(如4-gram)可能更适合处理长词和特定领域的术语。这里只是记录一下使用方法.........

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.coloradmin.cn/o/1320607.html

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈,一经查实,立即删除!

相关文章

干货,教你服务号改为订阅号

服务号和订阅号有什么区别?服务号转为订阅号有哪些作用?我们都知道,服务号一个月只能发4次文章,但是订阅号每天都能发文章。不过在接收消息这一方面,服务号群发的消息有消息提醒,并显示在对话框&#xff1b…

客观题测试-第7章查找

第1关:查找客观题测试(一) 1、关键字可以唯一地标识一个数据元素。 A、对 B、错 2、二叉排序树是一个动态查找表。 A、对 B、错 3、如果顺序表中各元素的查找概率相同,在顺序查找时,查找不成功的平均查找长度因…

回归预测 | MATLAB实现SABO-LSTM基于减法平均优化器优化长短期记忆神经网络的多输入单输出数据回归预测模型 (多指标,多图)

回归预测 | MATLAB实现SABO-LSTM基于减法平均优化器优化长短期记忆神经网络的多输入单输出数据回归预测模型 (多指标,多图) 目录 回归预测 | MATLAB实现SABO-LSTM基于减法平均优化器优化长短期记忆神经网络的多输入单输出数据回归预测模型 &a…

Linux线程——常用API

线程创建 函数原型及头文件 #include <pthread.h> int pthread_create(pthread_t *restrict tidp, const pthread_attr_t *restrict attr, void *(*start_rtn)(void *), void *restrict arg);参数解读 tidp当pthread_create成功返回时&#xff0c;由tidp指向的内存单元…

通过基准配置文件(Baseline Profiles)提升你的Android应用性能

通过基准配置文件提升你的Android应用性能 应用程序性能与用户体验直接相关&#xff0c;具有至关重要的意义。在开发者社区中&#xff0c;存在许多方法来提高应用程序性能。在本文中&#xff0c;您将通过利用基准配置文件&#xff08;Baseline Profile&#xff09;深入了解其中…

采购oled屏幕,应注意什么

在采购OLED屏幕时&#xff0c;应注意以下几点&#xff1a; 规格和参数&#xff1a;了解OLED屏幕的规格和参数&#xff0c;包括尺寸、分辨率、亮度、对比度、响应时间等。确保所采购的屏幕符合项目的需求和预期效果。 品质和可靠性&#xff1a;选择具有可靠品质和稳定性的OLED屏…

Spirng02

一、Spring中Bean的生命周期 当我们启动Spring项目的时候,就会初始化Spring的容器,Spring就会扫描启动引导类所在包及其子包中类的注解,并调用这些加了注解的类的构造方法创建对象(控制翻转),再创建了这些类的对象之后,就会找使用了Autowired注解的地方进行赋值(依赖注入)。随后…

如何访问AWS私有网络中的RDS (Mysql)

文章目录 小结问题及解决连接问题如何使用本地的Mysql Workbench对RDS进行访问 参考 小结 在AWS私有网络中部署了RDS (Mysql), 尝试通过外网成功地进行了访问. 问题及解决 连接问题 在AWS私有网络中部署了RDS (Mysql), 进行外网进行访问碰到了各种问题. 以下连接超时&…

ARM-----DMA笔记

1.DMA简介 DMA(Direct Memory Access) —直接存储器存取&#xff0c;是单片机的一个外设&#xff0c;它的主要功能是用来搬数 据&#xff0c;但是不需要占用 CPU &#xff0c;即在传输数据的时候&#xff0c; CPU 可以干其他的事情&#xff0c;好像是多线程一样。 数据传输支持…

computed 和 watch 的奇妙世界:让数据驱动你的 Vue 应用(上)

&#x1f90d; 前端开发工程师&#xff08;主业&#xff09;、技术博主&#xff08;副业&#xff09;、已过CET6 &#x1f368; 阿珊和她的猫_CSDN个人主页 &#x1f560; 牛客高级专题作者、在牛客打造高质量专栏《前端面试必备》 &#x1f35a; 蓝桥云课签约作者、已在蓝桥云…

RAG检索增强技术在知识库智能检索场景下的应用实践

如果你对这篇文章感兴趣&#xff0c;而且你想要了解更多关于AI领域的实战技巧&#xff0c;可以关注「技术狂潮AI」公众号。在这里&#xff0c;你可以看到最新最热的AIGC领域的干货文章和案例实战教程。 一、知识检索增强的基本概述 1.1、知识检索增强技术提出的背景 1.1.1、L…

【AD封装】2.0间距排针排母插件贴片(带3D)

包含了我们平时常用的2.0间距的排针&#xff0c;排母&#xff0c;贴片的插件的都有&#xff0c;总共100种封装及精美3D模型。完全能满足日常设计使用。每个封装都搭配了精美的3D模型哦。 2.0排针排母是一种电子连接器&#xff0c;通常用于电路板上的电子元件之间的连接。它由一…

【Python】人工智能-机器学习——不调库手撕贝叶斯分类问题

1. 作业内容描述 1.1 背景 数据集大小150该数据有4个属性&#xff0c;分别如下 Sepal.Length&#xff1a;花萼长度(cm)Sepal.Width&#xff1a;花萼宽度单位(cm)Petal.Length&#xff1a;花瓣长度(cm)Petal.Width&#xff1a;花瓣宽度(cm)category&#xff1a;类别&#xff0…

深入理解Spring Security授权机制原理

原创/朱季谦 在Spring Security权限框架里&#xff0c;若要对后端http接口实现权限授权控制&#xff0c;有两种实现方式。 一、一种是基于注解方法级的鉴权&#xff0c;其中&#xff0c;注解方式又有Secured和PreAuthorize两种。 Secured如&#xff1a; 1 PostMapping("…

推荐几款值得收藏的3DMAX插件

推荐几款值得收藏的3DMAX插件 StairGenerator StairGenerator一键楼梯插件&#xff0c;不需要花费太多的时间&#xff0c;轻松从2D平面图生成3D楼梯模型&#xff0c;生成的楼梯模型细节丰富真实。 【主要功能】 1.简单&#xff1a;轻松实现2D到3D建模。 2.具有最详细三维结…

六:爬虫-数据解析之BeautifulSoup4

六&#xff1a;bs4简介 基本概念&#xff1a; 简单来说&#xff0c;Beautiful Soup是python的一个库&#xff0c;最主要的功能是从网页抓取数据官方解释如下&#xff1a; Beautiful Soup提供一些简单的、python式的函数用来处理导航、搜索、修改分析树等功能。 它是一个工具箱…

中断响应,解决死锁的例子

对于关键字synchronized来说&#xff0c;如果一个线程在等待锁&#xff0c;那么结果只有两种情况&#xff0c;要么它获得这把锁继续执行&#xff0c;要么它就保持等待。而使用重入锁&#xff0c;则提供另外一种可能&#xff0c;那就是线程可以被中断。也就是在等待锁的过程中&a…

【Java 集合】ArrayBlockingQueue

ArrayBlockingQueue, 顾名思义: 基于数组的阻塞队列, 位于 JUC (java.util.concurrent) 下, 是一个线程安全的集合, 其本身具备了 不支持 null 元素: 存入 null 元素会抛出异常固定容量: 在初始化时需要指定一个固定的容量大小。这意味着一旦队列达到最大容量&#xff0c;将不再…

去除Antd组件库中上传文件中的一些默认样式

最近写的项目用到了antd组件库中的Upload了 <><Upload {...UploadProps} classNamechooseFile><Button style{{ marginRight: 8px }}>选择文件</Button></Upload><Button type"primary" onClick{upload}>开始上传</Button&g…

YOLOv8代码下载及环境配置

Github 下载YOLOv8官方代码进入Miniconda pytorch虚拟环境&#xff0c;或者用Pycharm打开文件进入虚拟环境&#xff0c;切换到YOLOv8代码目录&#xff0c;输入pip install -r requirements.txt 安装YOLOv8环境。 如果报错&#xff1a;WARNING: Ignore distutils configs in set…